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INTRODUCTION

Influenza IAVs are enveloped negative-strand RNA viruses 
that affect the respiratory systems of many bird species and 

can be transferred to other animals, including humans, result-
ing in global epidemics and pandemics (Wang et al., 2012). 

The surface proteins hemagglutinin (HA) and neuraminidase 
(NA), of which there are currently 18 HA and 11 NA sub-

types, give IAVs their names (Evseev and Magor, 2019). 
Avian influenza viruses are classed as either low pathogenic 

avian influenza (LPAI) or high pathogenic avian influenza 
(HPAI) based on the combinations of HA and NA (Swayne, 

2009; Kim et al., 2017). The majority of HPAIV mutants are 
low pathogenic H5 and H7 subtypes that become fatal to 

most gallinaceous birds, while the low pathogenic is mild or 
asymptomatic (Smith et al., 2015; Roy Chowdhury et al., 

2019). Most importantly, the capacity of IAV to elude the 

host immune system has been related to its severity in chick-
ens (Hogg, 2016; Qi et al., 2017; May et al., 2018).

Despite the fact that LPAIV is asymptomatic in most do-
mestic and wild waterfowl species, it has been shown to pro-

duce clinical signs and lesions in chickens that are very sim-
ilar to HPAIV in the early stages of infection, as a result of 

pathophysiological damage to the respiratory, digestive, and 
reproductive systems (Pantin-Jackwood and Swayne, 2009; 

Kuchipudi et al., 2014).
The economic burden imposed by HPAIV, and to a lesser 

extent LPAIV, on the poultry industry is enormous, but it also 
poses a threat to human health because it is zoonotic. HPAIV 
H5N1 cases involving human health occur on occasion 
(Plague and Aviaire, 2006), and the World Health Organiza-
tion has reported 860 confirmed cases and 454 deaths be-
tween 2003 and 2018. (Organization, 2018). In total, 7,122 
HPAI outbreaks occurred in 68 countries between January 
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2013 and August 2018, killing approximately 122 million 
birds (OIE, 2018).

Despite reported similarities in HPAIV and LPAIV patho-
genesis in their early stages of infection, few studies have 
been done on the comparison of the host-pathogen interaction 
and the molecular mechanisms underlying the pathogenesis of 
HPAIV H5N1 and LPAIV H3N2 infection in chickens, and 
the studies that have been done so far have covered a limited 
number of target genes (Ranaware et al., 2016). 

To gain a better knowledge of virus-host interactions, more 
information on the target genes of the two viral infections in 
chickens is needed. This study sought to provide insight into 
common target genes from differentially expressed genes 
(DEGs) and their biological functions as a result of host-IAV 
interactions in chickens using microarray datasets from a pre-
vious study (Kuchipudi et al., 2014), which is important in-
formation for the development of novel therapeutic strategies.

MATERIALS AND METHODS

1. Microarray Data Acquisition and Gene

Expression Profiling

Reanalysis of microarray data from two different influenza 
virus strains was performed in this study. The study specifi-
cally reevaluated data from a LPAI H2N3 virus strain known 
as A/mallard duck/England/7277/06 and a typical HPAI 
H5N1 virus strain known as A/turkey/England/50-92/91 or 
H5N1 50-92. These datasets were created as part of a pre-
vious study that looked at changes in gene expression in 
chickens and ducks after infection with the Influenza A Virus 
(IAV). The virus strains were chosen based on their pathoge-
nicity in chickens, with LPAI H2N3 being a mild form and 
HPAI H5N1 indicating a severe and deadly version (Kuchi-
pudi et al., 2014).

For microarray analysis, duplicate RNA samples from 
chicken cells infected with viruses and mock infected were 
employed, and a total of 6 array chips (2 viruses, 1 chicken 
duplicate, 2 controls) were used in the present study. HPAI 
H5N1 50-92, LPAI (H2N3), and control datasets were used 
(Table 1).

2. Identification and Functional Analysis of

Differentially Expressed Genes (DEGs)

The analysis of microarray images was conducted follow-
ing the methods detailed in a previous study by Won et al. 
(2017). In summary, the R program 'limma' was employed for 
the normalization and quality assessment of microarray 
images. Adaptive background correction was applied to adjust 
the median signal intensities, and the LOWESS (locally- 
weighted scatterplot smoothing) technique, as outlined by 
Ritchie et al. (2007), was utilized for standardization. Subse-
quently, log2-transformed fold changes and their associated 
standard errors were computed using a linear model, and em-
pirical Bayes statistics were employed to enhance the 
smoothing of standard errors. Differentially expressed genes 
(DEG) were filtered using a false discovery rate (FDR) cutoff 
of 0.05 and a two-sample t-test adjusted P-value. The Data-
base for Annotation, Visualization and Integrated Discovery 
(DAVID ), a web-based functional annotation tool, was used 
to further examine gene expression patterns (https://david. 
ncifcrf.gov/). 

3. Cell Culture, Total RNA Extraction and cDNA

Synthesis

 Chicken embryo fibroblast DF-1 cells, a spontaneously im-
mortalized continuous cell line derived from an East Lansing 
Line 0 (ev-0), were routinely cultured in high glucose Dul-
becco's Modified Eagle's Medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS) and maintained at 37℃
and 5% CO2. To induce toll-like receptor 3 signaling, the 
cells were washed once in phosphate buffered saline (PBS) 
before being treated with polyinosinic:polycytidylic acid 
(PIC). Total RNA was extracted from DF-1 cells using Trizol 
(Invitrogen, Carlsbad, CA, USA). A NanoDrop spectropho-

Table 1. Designs used in microarray image analysis using R 
‘limma’ package

Species Sample accession no. (GSM) Case

Chicken

GSM825784
LPAI H2N3

GSM825785

GSM825786 HPAI H5N1 
50-92GSM825787

GSM825790 Mock-infected 
controlGSM825791
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tometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) 
was used to measure total RNA. 

4. Reverse Transcription-Quantitative Polyme-

rase Chain Reaction (RT-qPCR)

The nucleotide sequences of chicken candidate genes from 

the National Center for Biotechnology Information (http://www. 
ncbi.nlm.nih. gov) and the Ensembl Genome Browser (http:// 

www.ensembl. org) were retrieved. The primers for amplifi-
cation of the genes (Table 2) were designed using PRIMER3 

software (http://bioinfo.ut.ee/primer3-0.4.0/).
To confirm the differential expression of target genes, 14 

upregulated common DEGs and 2 downregulated common 
DEGs were subjected to a reverse transcription-quantitative 

polymerase chain reaction (RT-qPCR). The expressions of the 
selected genes were analyzed using a CFX-96 RT-PCR de-

tection system (BioRad, Hercules, CA, USA). The sequences 
of forward and reverse primers are presented in Table 2. The 

PCR conditions were as follows: an initial step of 94℃ for 
3 min; 39 cycles of 94℃ for 10 s, 60℃ for 30 s, and 72℃

for 30 s; and a final step of 72℃ for 10 min. Dissociation 
was performed at 0.5℃ increments from 55℃ to 95℃ over 

25 min. All samples were measured in triplicate to ensure re-
producibility, and Ct values were calculated by the 2–ΔΔCt 

method [24]. The GAPDH gene expression was utilized as a 
standard.

5. Statistical Analysis

To determine significance levels, the t-test and analysis of 
variance statistical tests were used. Data were presented as 
mean standard error of mean. Duncan multiple range tests, 
followed by one-way ANOVA, were used to compare differ-
ent incubation times in each group.

RESULTS

1. Identification of Differentially Expressed Ge-

nes

We used six microarray datasets from a previous work by 
Kuchipudi et al. (2014) in the present study. These datasets 
were used to search for DEGs in chicken lung cells that had 
been infected with either HPAIV or LPAIV. Our initial goal 
was to identify the shared and unique transcriptome features 
elicited by these two virus strains, in order to acquire a better 
understanding of the molecular mechanisms underlying their 
pathogenicity in infected chickens. The study uncovered 760 
DEGs for HPAIV infection and 405 DEGs for LPAIV 
infection. Six hundred DEGs were identified to be specific to 
HPAIV, 317 to LPAIV, and 90 to be common to both. Of 
the identified DEGs, 521 for HPAIV, 232 for LPAIV and 76 
common for both viral strains were up regulated while 151 
for HPAIV, 85 for LPAIV and 12 common for both were 
down regulated (Fig. 1, Supplementary Table S1). It is of 

Table 2. Primer sets used in this study

Primer name Primer sequence (5′ to 3′) Tm (℃) Product size (bp)

CLK3 F CTCCGAACGCTGAGGGG 60 176

CLK3 R AAGGCATCCTGTCATGGCTC - -

IFI6 F GCCGGTTTCACTTCCTCTGG 60 80

IFI6 R CCCCCAAAGGATTTTGCCTC - -

NABP1 F CTAGCTGCCATGTGGTAGGG 60 78

NABP1 R GGGTCCTGCAACTGCACTAT - -

PINX1 F AGAGGAAGGCCCCCAAGAT 60 137

PINX1 R GGACCAGCCCATCTTTTCCA - -

WISP1 F GATTGCTCTGCATTCCCGAAA 60 205

WISP1 R GTCCGTGTGTAGGCCTCTTT - -

GAPDH F TGCTGCCCAGAACATCATCC 60 142

GAPDH R ACGGCAGGTCAGGTCAACAA - -
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note that among DEGs, minichromosome maintenance 9 ho-
mologous recombination repair factor 9 (MCM9), was the 
most positively regulated with 15,709-fold change in HPAIV 
infected lungs, while Heterogeneous nuclear ribonucleopro-
tein D Like (HNRNPDL) was the most negatively regulated 
with -594-fold change. In LPAIV infected lungs, integrator 
complex subunit 6 (INTS6), was the most positively regu-
lated with 2713-fold change, while sodium voltage-gated 
channel alpha subunit 8 (SCN8A) was the most negatively 
regulated with -24476-fold change. 

2. Gene Ontology (GO) Analyses

Functional annotation with DAVID revealed that in 
HPAIV and LPAIV infected lungs, 11 and 9 biological proc-
ess (BP) terms were substantially enriched, respectively 
(P<0.05, Fig. 2A and 2B, Supplementary Table S2). ‘Regu-
lation of transcription, DNA-templated’ and ‘cellular response 
to DNA damage’ were the highest enriched in both LPAIV 
and HPAIV infected lungs. In HPAIV and LPAIV infected 
lungs, 15 and 4 cellular component (CC) terms were sig-
nificantly enriched, respectively (P<0.05, Fig. 2A and 2B, 
Supplementary Table S2). Most enriched terms in HPAIV 
and LPAIV infected lungs were ‘nucleus’ and ‘cytoplasm’ 
(P<0.05).  

Five molecular function (MF) terms were significantly en-
riched in HPAIV infected lungs, and the number of MF 
terms in LPAIV infected lungs was the same (P<0.05, Fig. 

2A and 2B, Supplementary Table S2). The term 'poly (A) 
RNA binding' was the most enriched in HPAIV-infected 
lungs, whereas 'enzyme binding' was the most enriched in 
LPAIV-infected lungs. Furthermore, we functionally anno-
tated common DEGs that were regulated in both HPAIV and 
LPAIV. As a result, we were able to obtain a total of 7 GO 
terms. Positive control of 'fibroblast apoptotic process’, 
‘mitotic nuclear division’, and ‘mitotic chromosome con-
densation’ were enriched in BP terms, ‘cytoplasm and spindle 
microtubule’ were enriched in CC terms, and histone binding 
terms were enriched in MF terms (Table 3). 

3. Expression Profile of Target Genes in Poly

(I:C) Stimulated DF-1 Cells

RT-qPCR was performed to evaluate the expression of 16 
common DEGs that have been found to be strongly altered 
by IAV infection in PIC-treated DF-1 cells (Fig. 3). Among 
16 genes, we selected 5 genes, i.e., CDC-like kinase 3 (CLK3), 
Interferon Alpha Inducible Protein 6 (IFI6), Nucleic acid 
binding protein 1 (NABP1), PIN2/TERF1-interacting telo-
merase inhibitor 1 (PINX1), WNT1-inducible-signaling path-
way protein 1 (WISP-1) for further study. CLK3, IFI6, NA-
BP1, and PINX1 expressions were dramatically increased, but 
WISP-1 expression was significantly downregulated. In 
addition, the expression of CLK3, IFI6, NABP1, and PINX15, 
except WIPS1, increased with time and in a dose-dependent 
manner in the presence of PIC (Fig. 4).

            (A)                                                   (B)

         

Fig. 1. Venn diagram showing shared and unique DEGs in responses to LPAIV and HPAIV infection in chickens. (A) Venn dia-
gram showing shared and unique DEGs in responses to LPAIV and HPAIV infection in chickens. (B) The number of differentially 
expressed genes in LPAIV, HPAIV and Overlapped DEGs between LPAIV and HPAIV.
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          (A)                                 

          (B)

Fig. 2. Barplot of the GO terms for the DEGs. (A) GO analysis of LPAI. (B) GO annotation classification of HPAI. GO classi-
fication of HPAI used top 10 term of each ontology.
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Fig. 3. Expression profile of common DEGs after PIC stim-
ulation in DF-1 cells. Significant differences in expression lev-
els between Poly I:C and control are indicated as follows: *P< 
0.05, **P<0.01, ***P<0.001, ****P<0.0001. Error bars indicate standard 
error. 

DISCUSSION

Using a reanalysis of transcriptome data from a previous 
study, we investigated the molecular signatures for common 
responses in chicken lung cells to two AIV strains, LPAIV 
and HPAIV. Six microarray datasets obtained from prior 
work were used to perform comparative examinations of co-
mmon and particular DEGs in HPAI H5N1 50-92 and LPAI 
H2N3 infected chicken lung cells (Kuchipudi et al., 2014). 
The similar method has previously been used to evaluate 
gene expression in a range of avian species and has proven 
to be an effective tool for gene expression profiling (Moody 
et al., 2002; Crowley et al., 2009; Kuchipudi et al., 2014; 
Won et al., 2016). Bioinformatics analysis revealed that MCM-
9 was shown to be the most positively regulated as a con-
sequence of HPAIV infection in chickens. This gene is a 
member of the MCM gene family that is essential to form in-
itiation complex for eukayotic genome replication (Lutzman 

et al., 2005) and has been connected to DNA mismatch repair 
(MMR) in the previous study (Traver et al., 2015). A prior 
study established a link between MCM complexes and la-
tency-associated nuclear antigen (LANA), which is involved 
in viral genome replication and episome segregation (Dabral 
et al., 2019). However, in our analysis, this gene was never 
identified to be involved in any biological process or to per-
form any biochemical action, but was simply shown to be lo-
cated in the nucleus. On the other hand, the most negatively 
regulated gene, HNRNPDL, which belongs to the subfamily 
of ubiquitously expressed heterogeneous nuclear ribonucleo-
proteins, has been reported to control mRNA species for the 
expression of different proteins and to control IAV (Kawa-
mura et al., 2002; Li et al., 2019; Van Cuong et al., 2019). 

In LPAIV, the most positively regulated gene, INTS6, 
which is a putative RNA helicase, a member of DEAD box 
proteins, was reported to be involved in RNA metabolism in-
cluding degradation (Rocak and Linder, 2004; Heung and Del 
Poeta, 2005). On the other hand, the most negatively regu-
lated gene, SCN8A, belongs to the sodium channel alpha 
subunit gene family and is naturally involved in the establish-
ment of sodium channels in the nervous system (O'Brien and 
Meisler, 2013; Wagnon et al., 2016). 

Even while we were unable to identify the BP, MF, and 
CC to which MCM9, INTS6, and SCN8A may potentially 
contribute based on bioinformatics analysis, this does not rule 
out the possibility that these proteins play a role in AIV in-
fection pathogenesis. Further study is needed to determine 
their roles in the pathophysiology of AIV infection in chi-
ckens.

We used DF-1 cells to perform expression analysis on the 
common DEGs that were reported to be affected by both 

Table 3. Gene ontology (GO) analysis of common DEGs of which expression were altered by AIV infection in chicken lungs

GO Terms Count P-value

Biological process terms

Positive regulation of fibroblast apoptotic process 2 2.8E-2

Mitotic nuclear division 3 1E-2

Mitotic chromosome condensation 2 5.0E-2

Cellular component terms
Cytoplasm 17 6.2E-2

Spindle microtubule 2 9.4E-2

Molecular function terms Histone binding 3 5.8E-3
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HPAIV and LPAIV infected chicken lungs, in order to eluci-
date the involvement of TLR3 signals in transcriptional regu-
lation of them. Among the selected common DEGs, CLK3 
was known to be up regulated by virus infection (Alam et al., 
2019). CLK3 was initially described as regulating pre-mRNA 
splicing (Menegay, 1999). In addition, CLK3 has also been 
demonstrated to activate growth factor-stimulated signal trans-
duction cascade components, culminating in the activation of 
the mitogen-activated protein kinases cascades, i.e. ERK-1, 
ERK-2, and pp90RSK (Myers et al., 1994). NABP1 gene is 
known to regulate cellular DNA damage response including 
cell-cycle checkpoint activation, recombinational repair and 

maintenance of genomic stability (Richard et al., 2008). For 
PINX1 gene, it is known that PinX1 can directly interact 
with the telomerase catalytic component hTERT and inhibit 
telomerase activity and in some cancer cells, induces apopto-
sis and suppresses cell proliferation. These evidences suggest 
that PINX1 is an endogenous telomerase inhibitor and a po-
tential tumor suppressor (Liu et al., 2013). IFI6, also known 
as G1P3, IFI-6-16 and IFI616 is a gene that belongs to the 
interferon stimulated genes (ISGs) (Chen et al., 2016). This 
gene was reported to be involved in various activities includ-
ing regulation of apoptosis and is thought to possess anti-vi-
ral effects even though this is not yet well elucidated (Qi et 

(A)                                                         (B)     

    

 
(C)                                                        (D)

    

(E)

Fig. 4. Time and dose dependent expression profile of selected target genes after PIC stimulation. Significant differences in ex-
pression levels between PIC and control are indicated as follows: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Error bars indicate 
standard error.
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al., 2015). 
Collectively, the results presented indicate that candidate 

genes, which expressed both in LPAIV and HPAIV infection 
play important roles in innate immune response.

CONCLUSION

This study brings in new information about DEGs and 
their biological functions in the pathogenesis of HPAIV and 
LPAIV in chicken cells. We reported that many DEGs in 
HPAIV-infected chickens were involved in cell cycle, which 
may explain the severity and fatality of the disease. We also 
reported that IAV may have suppressed IFI6, a novel anti-vi-
ral gene, as a strategy to evade the host surveillance system. 
We finally reported that IFI 6 is expressed through TLR3 sig-
naling pathway via NFκβ. Further studies should focus on 
elucidating the association between IAV and IFI6 to better 
understand the pathogenesis of these viruses, which would 
lead to the development of novel therapeutic strategies. 

This study brings in new information about DEGs and 
their biological functions in the pathogenesis of HPAIV and 
LPAIV in chicken cells. We reported that some DEGs found 
to be involved in some key cellular functions like cell cycle 
might have facilitated HPAIV replication into the chicken 
cells. We also reported that they might be a possibility that 
HPAIV might have suppressed some important anti-viral 
genes in order to evade the host surveillance system. Further 
studies would focus to elucidate the mechanisms of these as-
sociations, which would lead to the development of novel 
therapeutic strategies.

SUMMARY

인플루엔자 A 바이러스(IAVs)는 많은 조류 종의 호흡 기
관에 감염되며 사람을 비롯한 다른 동물로 전파될 수 있는

포장된 음극성 역전사 RNA 바이러스이다. 이 연구에서는
이전 연구의 마이크로어레이 데이터를 다시 분석하여 닭에

서 공통 및 특이하게 발현되는 유전자(DEG) 및 그들의 생
물학적 활동을 식별하였다. 고병원성(HPAIV) 및 저병원성
(LPAIV) 인플루엔자 A 바이러스 감염된 닭 세포에서 각각
760개와 405개의 DEG가 발굴되다. HPAIV 및 LPAIV는 각

각 670개와 315개의 DEG를 가지고 있으며, 이 중 90개의
DEG가 두 바이러스에서 공유된다. HPAIV 감염으로 인해
DEG의기능 주석에따르면세포 주기의 기본적인생물학적
기능과 연관된 다양한 유전자가 발굴되었다. 대상 유전자
중에서 CDC Like Kinase 3(CLK3), Nucleic Acid Binding 
Protein 1(NABP1), Interferon-Inducible Protein 6(IFI6), PIN2 
(TERF1) Interacting Telomerase Inhibitor 1(PINX1), 그리고
Cellular Communication Network Factor 4(WISP1)의 발현은
polyinosinic:polycytidylic acid(PIC)로 처리된 DF-1 세포에서
변화되었다. 이것은 toll-like receptor 3(TLR3) 리간드인
TLR3 신호에 의해 이러한 유전자의 전사가 조절될 수 있음
을 시사하며, 닭에서 AIV의 병리 생리학에 대한 더 나은 이
해를 얻기 위해서는 AIV 감염 과정 중에 호스트 반응을 조
절할 수 있는 메커니즘을 구명하는 데 더 많은 연구에 초점

을 맞추는 것이 필요하다고 사료된다. 이러한 메커니즘에
대한 이해는 신규 치료 전략 개발에 활용될 수 있다.
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