

Exploring the Feasibility of Insect-Based Feed Ingredients for Broiler Chickens

Ha Neul Lee¹ and Jong Hyuk Kim^{2†}

¹Graduate Student, Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea

²Professor, Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea

ABSTRACT Recent concerns regarding environmental impact and rising feed costs have intensified the search for sustainable protein and lipid sources in animal nutrition, particularly for poultry, swine, and aquaculture. Among the various alternatives under investigation, insects have gained significant attention due to their low environmental emissions and favorable nutritional characteristics. Numerous insects, such as mealworms, grasshoppers, crickets, housefly maggots, silkworm pupae, bloodworms, and black soldier fly larvae (BSFL), have been evaluated as potential feed ingredients for broiler diets. These insects are valued for their high concentrations of protein, lipids, and bioactive components with antimicrobial functions. Among various insects, BSFL have attracted particular attention for their ability to convert organic waste into biomass and for their lipid, which is rich in medium-chain fatty acids such as lauric acids. This review evaluates the existing literature involving BSFL to assess their impact on broiler diets. Previous studies have reported that BSFL powder, meal, and oil can partially or fully substitute conventional protein and lipid sources without compromising growth performance in broiler chickens. Moreover, inclusion of BSFL has been shown to influence fatty acid composition and meat quality depending on the form (powder, full-fat meal, defatted meal, and oil) and inclusion level. Therefore, BSFL are regarded as one of the most promising candidates for sustainable broiler diets.

(Key words: alternative feed ingredient, black soldier fly larvae, broiler chicken, growth performance, insect)

INTRODUCTION

The global population is expected to reach approximately 8.6 billion by 2050 and 11.2 billion by 2100 (Rastegaripour et al., 2024). Along with this demographic growth, global meat consumption is also projected to rise. Between 2021 and 2030, the world's population is predicted to grow by 11%, while meat consumption is estimated to increase by 14% compared to the 2018–2020 baseline (Farchi et al., 2017; Godfray et al., 2018). Despite the rising demand for animal-derived foods, the production of grains that serve as essential feed ingredients has been declining (Lee et al., 2024a). Moreover, the total area of arable and grazing land has continuously decreased due to conversion into forest, industrial plantations, and urban infrastructure (Ramankutty et al., 2018). In addition, global warming has triggered climate-related shifts in precipitation and temperature patterns, directly influencing agricultural productivity (Prajapati et al., 2024). These environmental changes disrupt crop growth cycles and ultimately reduce yields (Verma et

al., 2025). Consequently, reduced crop productivity has intensified competition for major feed ingredients, particularly corn and soybean, and led to stricter limitations on their utilization (Adedeffi et al., 2021).

The increasing demand for meat inevitably heightens the demand for protein and energy sources in animal feed (Smith et al., 2024). Protein is an essential nutrient that influences growth performance, reproduction, and overall productivity in livestock. However, the prices of conventional protein sources such as soybean meal have risen sharply due to limited farmland, market fluctuations, and competition with human food supply chains (Onsongo et al., 2018; Kim et al., 2021; Xiao et al., 2025). Fish meal has also been one of the primary animal protein sources (Rawski et al., 2020). However, overfishing driven by increasing demand has threatened many wild fish populations and caused a rise in fish meal prices (Nogales-Mérida et al., 2019). In addition, the continued expansion of the aquaculture industry has been constrained by limited global fish meal production and growing competition from the livestock and industries (Xiao

[†] To whom correspondence should be addressed : jonghyuk@chungbuk.ac.kr

et al., 2018). In addition, traditional lipid sources, including tallow, lard, and poultry fat, as well as soybean oil, corn oil, and sunflower oil, are extensively used in feed formulations (Ravindran et al., 2014). In particular, soybean oil provides high metabolizable energy but remains expensive and constrained in availability. In contrast, tallow is relatively cost-effective, but its rendering process contributes substantially to greenhouse gas emissions (Fascina et al., 2009; Okur, 2020). Therefore, exploring sustainable alternative sources of protein and lipid is essential to ensure stable livestock production and feed supply under the current global resource constraints.

INSECTS AS ALTERNATIVE FEED INGREDIENTS

With the increasing scarcity and rising cost of conventional protein and energy sources in animal feed, insects have emerged as promising alternative ingredients for sustainable feed production (Bovera et al., 2018; Lee et al., 2024b). Insects offer distinct advantages: they can be mass-produced in compact spaces without the need for arable land, and they efficiently convert organic waste into nutrient rich biomass (Kim et al., 2019). Compared to conventional livestock, insect farming produces substantially lower greenhouse gas and ammonia emissions (Steinfeld et al., 2006). Livestock production, including the transport of livestock and feed, accounts for approximately 18% of global anthropogenic greenhouse gas emissions. However, insects emit lower levels of greenhouse gases and ammonia (Oonincx et al., 2010). Moreover, insects provide valuable nutrients including high levels of protein, fatty acids, vitamins, and minerals. Thus, insects are suitable substitutes for protein and lipid sources (Jang et al., 2019; Adedeji et al., 2021). Commonly farmed insect species for feed include the mealworms, grasshoppers, crickets, housefly maggots, silkworm pupae, bloodworms, and black soldier fly larvae (BSFL).

1. Mealworm

Mealworms (*Tenebrio molitor*) are cosmopolitan insects commonly found in stored grain and food products (Bovera et al., 2015). Mealworms have a life cycle of approximately

three months, progressing through egg, larval, pupal, and adult stages (Hwang et al., 2015). The larvae and pupal stages contain high protein levels and are easy to rear (Ghaly and Alkoai, 2009). In a previous study, *Tenebrio molitor* was reported to contain approximately 63% crude protein (CP) on a dry matter (DM) basis (Adámková et al., 2016). Mealworms can thrive on various organic wastes, converting them into nutrient-dense biomass with relatively low energy input, minimal land use, and reduced environmental impact (Khusro et al., 2012; Makker et al., 2014). As a result, they are already produced commercially as feed for pets, reptiles, birds, and fish (Makker et al., 2014). Moreover, the chitin content of mealworms is relatively low, ranging from 4.7% to 4.9% (Song et al., 2018), which is lower than that of grasshoppers (4.7% to 11.8%) and crickets (8.7%) (Wang et al., 2008; Kaya et al., 2015). Nutritionally, the ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids (SFAs) in mealworms is comparable to that of vegetable oils (Martínez-Pineda et al., 2024). In particular, mealworms contain substantial amounts of linoleic acid (32.4%) and oleic acid (36.8%) (Wu et al., 2020; Martínez-Pineda et al., 2024). However, mealworms have relatively low levels of omega-3 PUFAs, which may limit their application as a functional ingredient (Liu et al., 2025). In addition, their protein quality is comparable to soybean meal, although they are relatively low in Met, which may not fully meet the amino acid requirements of poultry (Ramos-Elorduy et al., 2002).

2. Grasshopper

Grasshoppers (*Acrididae*) are hemimetabolous insects that resemble adults during their immature stages, gradually developing wings and reproductive organs at the final molt (Konopova et al., 2011). Although some grasshoppers are agricultural pests capable of forming crop damaging swarms (Dakhel et al., 2020), their utilization in feed or pest control programs could simultaneously reduce pesticide use and environmental contamination (Khusro et al., 2012). Grasshoppers have been reported to contain approximately 52% CP on a DM basis, and this value remains relatively consistent throughout their growth (Nginya et al., 2019). In a previous study, grasshoppers were found to contain higher levels of amino acids such as Arg, His, Thr, Trp, and Gly compared

with fish meal (Lee et al., 2024b). In addition, they contain essential fatty acids, particularly omega-3 and omega-6, which play important roles in immune system and reproductive health (Alagawany et al., 2019). However, the exoskeleton of grasshoppers contains a substantial amount of chitin, ranging from 4.71% to 11.84% on a DM basis (Kaya et al., 2015). Chitin is considered one of the major factors responsible for reduced nutrient digestibility (Dourado et al., 2020). Koh and Iwamae (2013) reported that broiler chickens are able to digest chitin, as they produce the enzyme chitinase in parts of the gastrointestinal tract, particularly in the proventriculus. The digestibility of chitin is generally around 30% but may vary depend on its sources (Khempaka et al., 2011).

3. Cricket

Crickets (Gryllidae) have a short life cycle of 60 to 70 days, and a female can lay between 200 and 1,500 eggs within 21 days (Nikkhah et al., 2021). Traditionally, crickets have been used as feed for animals such as reptiles, fish, and birds, but they are now recognized as potential ingredients for livestock and human consumption (Park et al., 2013). They contain high CP content (approximately 57%) and a variety of essential amino acids, including Met, Lys, His, Val, and Leu (Jayanegara et al., 2017; Phesatcha et al., 2023). In addition, they are rich in PUFAs, such as linoleic acid and oleic acid (Rodríguez-Párraga et al., 2025). Oleic acid has been associated with blood pressure regulation through its role in guanine nucleotide-binding protein-mediated signaling pathways (Terés et al., 2008; Massimo et al., 2009). Crickets are also rich in iron, hemoglobin synthesis (Astuti and Komalasari, 2020), and contain a notable amount of chitin (approximately 8.7 g per 100 g), a compound known to enhance immune function and improve disease resistance (Harikrishnan et al., 2012; Astuti and Komalasari, 2020). Owing to their high CP and chitin contents, crickets offer greater nutritional value than BSFL or mealworms (Wang et al., 2005; Jayanegara et al., 2017). However, excessive dietary chitin can exert lipid lowering and cholesterol reducing effects, which may decrease body fat deposition in broiler chickens (Koide, 1998; Hossain and Blair, 2007; Ou et al., 2025).

4. Housefly Maggot

Housefly (*Musca domestica*) is holometabolous insect with four life stages: egg, larva, pupa, and adult (Park et al., 2003). Although it is a potential vector of pathogens, its larvae are economically valuable due to ability to convert organic waste into high protein biomass (Pretorius, 2011; Niu et al., 2017; Eggink et al., 2022). Zulkifli et al. (2022) highlighted that small body size of houseflies allows them to be reared in confined spaces. At poultry farms, housefly maggots are used for waste reduction and manure recycling (Ei Boushy et al., 1985), with treatment efficiencies reaching 70% to 75%, leaving about 25% to 30% of processed material as usable fertilizer (Ei Boushy et al., 1985; Ahmad et al., 2022). Housefly maggots possess bioactive compounds with antibacterial, antiviral, antioxidant, and anti-tumor properties (Gong et al., 2005). In addition, extracts from housefly maggots have been reported to contain antibacterial peptides (Bexfield et al., 2004; Park et al., 2010; Park, 2023), highlighting their potential value as functional feed additives. Nutritionally, dried maggots and pupae contain approximately 56.9% and 60.7% CP on a DM basis, respectively (Onifade et al., 2001). Moreover, their protein and amino acid compositions are comparable to those of fish meal (Onifade et al., 2001). However, during metamorphosis, crude protein content tends to decrease, whereas lipid content increases (Aniebo and Owen, 2010). Housefly maggot contain high concentrations of linoleic acid and oleic acid (Jansen-Alves et al., 2025). Although the adult houseflies are known vectors of pathogenic microorganisms, the use of housefly maggots in poultry feed may raise public health concerns, primarily due to potential contamination during rearing and processing. However, these risks can be minimized through appropriate rearing and processing methods (Awoniyi et al., 2004).

5. Silkworm Pupae

Silkworm (*Bombyx mori*) pupae, a by-product of the silk industry, are often discarded after silk reeling despite their nutritional potential (Das and Sutradhar, 1971; Ncobia and Chimonyo, 2015). This practice contributes to environmental waste accumulation (Miah et al., 2020). Silkworm pupae contain 60% to 75% protein, which is comparable or superior to soybean and fish meal (Markker et al., 2014), along with

significant amounts of calcium, phosphorus, Lys, and Met (Habib and Hasan, 1995). They also contain valuable oil rich in unsaturated fatty acids, particularly oleic acid and α -linolenic acid (Rodríguez-Ortiz et al., 2024). α -Linolenic acid has been reported to exhibit various bioactive properties, including anticancer, anti-inflammatory, antioxidant, anti-obesity, neuro-protective, and gut microbiota-modulating effects (Yuan et al., 2022). However, due to its high degree of unsaturation, α -linolenic acid is known to be oxidatively unstable (Wang et al., 2025). The oxidative degradation of α -linolenic acid is a major limitation in the utilization of oils rich in this fatty acid for food and nutraceutical applications (Kotake-Nara et al., 2002).

6. Bloodworm

Bloodworms (*Chironomus* spp.) have a four-stage holometabolous life cycle, with aquatic egg, larval, and pupal stages, and a terrestrial adult phase (Armitage, 1995). Chironomidae larvae are commonly referred to as bloodworms due to their cylindrical, worm-like bodies and red coloration, which is related to the presence of hemoglobin (Cranston, 2004). They inhabit stagnant or slow-moving freshwater environments and primarily feed on decomposing organic matter and detritus (Armitage, 1995; Cranston, 2004; De Haas et al., 2006; Callisto et al., 2007). In addition, bloodworms possess hemoglobin that enables them to absorb and store oxygen efficiently under hypoxic conditions (Sulistiyarto et al., 2014). Organic waste materials used for bloodworm cultivation include chicken manure, cow dung, duck waste, and vegetable residues (Hamidoghi et al., 2014; Kumar, 2016; Podder et al., 2018). In particular, chicken manure has been utilized for the mass production of bloodworms (Shaw and Mark, 1980). Bloodworms contain 52% to 55% protein on a DM basis and 4.5% to 9.7% crude fat, making them an energetically adequate feed source for fish (Thipkonglars et al., 2010; Naser and Roy, 2012). In addition, they are rich in PUFAs, which are essential for the growth and reproduction of most marine organisms (Lytle et al., 1990). However, because bloodworms feed on algae and detritus, they may serve as potential reservoirs for zoonotic agents such as *Salmonella*, *Vibrio cholerae*, *Campylobacter jejuni*, and *Escherichia coli* (Rouf and Rigney, 1993; Broza

and Halpern, 2001; Moore et al., 2003).

7. Black Soldier Fly Larvae

Black soldier fly (BSF; *Hermetia illucens*) is widely distributed in tropical and temperate regions with optimal temperatures between 25 to 30°C (Siddiqui et al., 2022). Its holometabolous life cycle, comprising egg, larval, pupal, and adult stages, lasts approximately 37 to 41 days (Singh and Kumari, 2019). A single female can lay around 1,000 eggs, which hatch within 3 to 4 days (Kim et al., 2008; Muraro et al., 2024). In addition, BSFs have many commercial values given the large number of eggs and high hatching rate similar to that of mealworms (Kim et al., 2008). Only the BSFL stage requires feeding, and BSFL can grow on a wide range of organic substrates, such as decaying plant material, food waste, and animal manure (Amrul et al., 2022). In addition, BSFL have gained considerable attention for their ability to convert livestock manure and other organic wastes into larval biomass rich in protein and fat (Liu et al., 2017; Shorstki et al., 2020). As BSFL consume a wide range of organic substrates, they are likely to acquire both beneficial and pathogenic microorganisms, which may subsequently be transmitted to animals through feed (De Smet et al., 2018; Khamis et al., 2020; Tanga et al., 2021; Siddiqui et al., 2025). BSFL contain approximately 32% to 53% crude protein and 18% to 33% crude fat (St-Hilaire et al., 2007; Yu et al., 2009). Due to their high protein and lipid content, BSFL are increasingly utilized as feed ingredients in livestock, aquaculture, and pet food industries (Lu et al., 2022). BSFL are also rich in SFAs, particularly lauric acid (Ewald et al., 2019; Srisuksai et al., 2024). Lauric acid has been reported to exert antimicrobial effects on gut bacteria (Zeitz et al., 2015; Schiavone et al., 2017; Somparn et al., 2024). However, high SFA content in BSFL can alter the lipid profile of animal products, which may be associated with an increased risk of cardiovascular disease in human (Katidi et al., 2023; Yazdanparast et al., 2025).

Among insects, BSFL are considered one of the most promising sources of sustainable protein and lipids due to their high reproductive rate, efficient waste bioconversion capacity, and fatty acid composition. Therefore, this review aims to evaluate the potential of BSFL as an alternative

source of protein and lipids in broiler diets.

NUTRITIONAL AND FUNCTIONAL VALUE OF BLACK SOLDIER FLY LARVAE AS A FEED INGREDIENT

The BSFL has gained significant attention as a sustainable feed ingredient owing to their remarkable capacity to convert diverse organic residues, such as spoiled feed, food waste, and livestock manure, into nutrient-dense larval biomass (Liu et al., 2017; Khan et al., 2018; Heita et al., 2023). This bioconversion process effectively reduces the amount of organic waste and mitigates related environmental impacts, while simultaneously contributing to the production of alternative protein sources (Dorper et al., 2021; Dzepe et al., 2021). BSFL contains approximately 32% to 53% CP and 18 to 33% fat (St-Hilaire et al., 2007). However, these values vary throughout their life cycle; crude fat content tends to increase, whereas CP decreases from the early to late larval stages (Liu et al., 2017). The essential amino acid profile of BSFL includes Met (0.66% to 0.92%), Val (2.20% to 2.82%), Lys (2.34% to 2.75%), and Arg (1.73% to 2.65%) (Alafif et al., 2025). Thus, BSFL are characterized by an optimal composition of essential amino acids and fatty acids for poultry nutrition (Veldkamp and Bosch, 2015; Li et al., 2016; Lock et al., 2016). In addition, the exoskeleton of BSFL is composed of chitin, a long-chain polymer of N-acetyl-glucosamine, which has been proven to be highly versatile for various medical, industrial, and biotechnological applications (Finke, 2007; Puvvada et al., 2012). Their lipid composition is particularly abundant in medium-chain fatty acids (MCFAs), with lauric acid and myristic acid being the predominant components (Ushakova et al., 2016; Benzertiha et al., 2020). Lauric acid, in particular, serves as a precursor for monolaurin, which functions as a potent antimicrobial agent (Suryati et al., 2023). Furthermore, lauric acid has been linked to enhanced growth performance, improved feed efficiency, and better meat quality in broiler chickens (Zeitz et al., 2015; Schiavone et al., 2017; Pappula et al., 2021). Although the overall fatty acid composition of BSFL can vary depending on the type of rearing substrate (Kierończyk

et al., 2020; Riekkinen et al., 2022), the larvae are capable of synthesizing lauric acid irrespective of dietary substrate composition, thereby maintaining a relatively stable concentration (Benzertiha et al., 2020).

1. Effects of Black Soldier Fly Larvae Powder Supplementation in Broiler Diets

The physical properties of alternative feed ingredients affect feed formulation as well as decisions regarding feed storage and management on farms (Pornsuwan et al., 2023). BSFL powder is typically produced by drying the larvae (most commonly through hot-air or freeze-drying methods), followed by grinding them into a fine powder (Choi et al., 2013; Herawati and Permata, 2023; Pornsuwan et al., 2023). BSFL powder has been increasingly used as a sustainable protein source in broiler diets (Choi et al., 2013). Numerous studies have investigated its impact on growth performance in broiler chickens. Choi et al. (2013) reported that dietary supplementation of 3% or 6% BSFL powder did not significantly affect body weight (BW), BW gain (BWG), feed intake (FI), and feed conversion ratio (FCR) in broiler chickens (Table 1). However, dietary supplementation with 6% BSFL powder increased breast muscle weight compared with the other treatments (Choi et al., 2013). Similarly, Herawati and Permata (2023) observed that dietary supplementation of 5%, 10%, 15%, or 20% BSFL powder did not influence BW in broiler chickens. Lee et al. (2024c) reported that broiler chickens fed diets containing 1% and 2% BSFL did not show significant differences in BWG, FI, and feed efficiency. However, dietary supplementation with 2% BSFL powder increased fatty acid composition of breast meat, such as myristic acid and eicosapentaenoic acid (Lee et al., 2024c). On the other hand, dietary inclusion of BSFL powder at levels of 2%, 4%, and 6% has been reported to increase BW and BWG, while decreasing serum parameters such as triglyceride and uric acid (El-Kaiaty et al., 2022). Despite the absence of significant change in growth performance, these findings suggest that BSFL powder can partially replace conventional protein ingredients such as soybean meal without adverse effects on productivity, indicating its potential as a sustainable feed component in broiler production.

Table 1. Effects of dietary supplementation with black soldier fly larvae (BSFL) powder in broiler chickens¹

Sources	Inclusion level	Optimal inclusion level	Positive effects ²	References
BSFL powder	30 and 60 g/kg	60 g/kg	Carcass trait (breast meat weight↑)	Choi et al. (2013)
	20, 40, and 60 g/kg	60 g/kg	Growth performance (BW↑, BWG↑), Serum parameter (TP↑, HDL↑, TCHO↓, El-Kaiaty et al. (2022) TG↓, LDL↓, uric acid↓)	
	50, 100, 150, and 200 g/kg	-	No significance	Herawati and Permata (2023)
	10 and 20 g/kg	20 g/kg	Fatty acid composition of breast meat (EPA↑)	Lee et al. (2024c)

¹ BSFL, black soldier fly larvae; BW, body weight; BWG, body weight gain; TP, total protein; HDL, high-density lipoprotein; TCHO, total cholesterol; TG, triglyceride; LDL, low-density lipoprotein; EPA, eicosapentaenoic acid.

² The symbol '↑' represented an increase, while '↓' denoted a decrease.

2. Effects of Black Soldier Fly Larvae Meal Supplementation in Broiler Diets

Full-fat BSFL meal is produced by drying the larvae and subsequently grinding them into a meal (Onsongo et al., 2018; Attia et al., 2023; Adegbenro et al., 2024). On the other hand, defatted BSFL meal is obtained by subjecting the dried larvae to an oil extraction process, after which the remaining press cake is ground into a meal (Kim et al., 2022; Mat et al., 2022). BSFL meal has gained increasing attention as a high protein ingredient in broiler diets, offering a sustainable alternative to conventional sources such as soybean meal and fish meal (Mat et al., 2022). Attia et al. (2023) found that inclusion of 3% full-fat BSFL meal during the starter phase and 5% during the finisher phase did not significantly influence BWG among dietary treatments (Table 2). However, dietary full-fat BSFL meal supplementation increased FI compared with diets containing soybean meal or fish meal. Onsongo et al. (2018) demonstrated that partial replacement of soybean meal and fish meal with full-fat BSFL meal at inclusion levels of 13.8%, 27.4%, and 42.0% showed no significant differences in BW, BWG, average daily feed intake (ADFI), and FCR in broiler chickens. Adegbenro et al. (2024) also reported that dietary supplementation with 1.25%, 2.5%, 3.75%, and 5% full-fat BSFL meal did not significantly affect BW, FI, and FCR in broiler chickens. Likewise, Murawska et al. (2021) found that higher substitution levels of 50%, 75%, and 100% of soybean meal with full-fat BSFL meal decreased BW and ADFI. Nonetheless, substituting 50% of soybean meal with full-fat BSFL meal did not affect

average daily gain (ADG) and FCR in broiler chickens (Murawska et al., 2021). Afam-Ibezim et al. (2025) observed that substituting 25%, 50%, 75%, and 100% of fish meal with full-fat BSFL meal did not affect BW, ADG, ADFI, and FCR in broiler chickens. In contrast, Kirimi et al. (2023) demonstrated that replacing 50%, 75%, and 100% of soybean meal with full-fat BSFL meal decreased FCR in broiler chickens. However, substituting 25%, 50%, 75%, and 100% of soybean meal with BSFL meal did not show significant BW, ADG, and ADFI (Kirimi et al., 2023). Dietary supplementation with 4%, 8%, and 12% defatted BSFL did not affect ADG, ADFI, and FCR in broiler chickens. However, broiler chickens fed diets containing 4% defatted BSFL had greater BW compared with the other treatments (Mat et al., 2022). On the other hand, Kim et al. (2022) observed that replacing 50% of soybean meal with defatted BSFL meal in diets resulted in reduced BW, ADG, and ADFI in broiler chickens. Similarly, La Mantia et al. (2024) reported that replacing 50% and 100% soybean cake with defatted BSFL decreased BW and thigh weight. Schiavone et al. (2019) also observed that dietary inclusion levels of 5%, 10%, and 15% defatted BSFL meal decreased BW and carcass weight. Overall, these studies suggest that moderate inclusion levels of BSFL meal can replace conventional protein sources without compromising growth performance, whereas excessive replacement may negatively influence BW and FI. Therefore, these findings highlight the importance of optimizing inclusion levels to balance nutritional adequacy and cost-effectiveness in broiler diets.

Table 2. Effects of dietary supplementation with black soldier fly larvae (BSFL) meal in broiler chickens¹

Sources	Inclusion level	Optimal inclusion level	Positive effects ²	References
	50, 100, and 150 g/kg	-	No significance	Onsongo et al. (2018)
Full-fat BSFL meal	Starter: 200, 300, and 400 g/kg Grower: 170, 250, and 340 g/kg Finisher: 130, 200, and 270 g/kg	Starter: 200 g/kg Grower: 170 g/kg Finisher: 130 g/kg	Meat quality (TBARS ↓)	Murawska et al. (2021)
	Starter: 30 g/kg Finisher: 50 g/kg	Starter: 30 g/kg Finisher: 50 g/kg	Growth performance (FI ↑)	Attia et al. (2023)
	62.5, 125, 187.5, and 250 g/kg	187.5 g/kg	Growth performance (FCR ↓), Carcass trait (thigh weight ↑)	Kirimi et al. (2023)
	12.5, 25, 37.5, and 50 g/kg	-	No significance	Adegbenro et al. (2024)
	5, 10, 15, and 20 g/kg	-	No significance	Afam-Ibezim et al. (2025)
Defatted BSFL meal	50, 100, and 150 g/kg	50, 100, and 150 g/kg	Meat quality (breast meat color, a* ↑)	Schiavone et al. (2019)
	Starter: 75 and 150 g/kg Grower: 70 and 140 g/kg Finisher: 65 and 130 g/kg	Starter: 150 g/kg Grower: 140 g/kg Finisher: 130 g/kg	Relative length and weight (↑ entire digestive tract length ↑, ileum length ↑, duodenum weight ↑), Serum parameter (LDL ↓), Renal and muscle function (CPK ↓)	Kim et al. (2022)
	40, 80, and 120 g/kg	40 g/kg	Growth performance (BW ↑)	Mat et al. (2022)
	120 and 256 g/kg	120 and 256 g/kg	Fatty acid composition of thigh meat (lauric acid ↑, γ-linolenic acid ↑)	La Mantia et al. (2024)

¹ BSFL, black soldier fly larvae; TBARS, thiobarbituric acid reactive substance; FI, feed intake; FCR, feed conversion ratio; a*, redness; LDL, low-density lipoprotein; CPK, creatine phosphokinase; BW, body weight.

² The symbol '↑' represented an increase, while '↓' denoted a decrease.

3. Effects of Black Soldier Fly Larvae Oil Supplementation in Broiler Diets

BSFL oil is produced by drying the larvae, followed by grinding and extracting oil from the dried material (Haskaraca et al., 2025). BSFL oil is a rich source of MCFAs, particularly lauric acid, and has been investigated as a sustainable lipid alternative in broiler diets (Kim et al., 2020). Schiavone et al. (2018) demonstrated that replacing 50% or 100% soybean oil with BSFL oil had no significant influence on ADG, ADFI, and FCR in finisher broiler chickens. In contrast, Aslam et al. (2025) observed that dietary supplementation with BSFL oil resulted in less FCR compared with diets containing palm oil, poultry fat, and tallow (Table 3). Azizah et al. (2024) reported that the addition of 0.5% BSFL oil in diets decreased FCR compared with the basal diet.

Kierończyk et al. (2023) found that dietary inclusion of 3%, 6%, and 9% BSFL oil increased BWG and decreased FCR in broiler chickens. Dietary supplementation with 3% and 6% BSFL oil increased FI, while FI decreased in broiler chickens fed diets containing 9% BSFL oil (Kierończyk et al., 2023). Kim et al. (2020) observed that dietary inclusion of 3% corn oil, coconut oil, and BSFL oil resulted in no significant differences in BWG and FI of broiler chickens. However, dietary supplementation with 3% BSFL oil showed less FCR compared to 3% corn oil (Kim et al., 2020). Kierończyk et al. (2024) demonstrated that dietary inclusion of soybean oil and BSFL oil had no significant effect on BWG, FI, and FCR in broiler chickens. Similarly, Schiavone et al. (2017) reported that replacing 50% and 100% of soybean oil with BSFL oil did not affect BW, ADFI, ADG, and FCR in broiler chickens.

Table 3. Effects of dietary supplementation with black soldier fly larvae (BSFL) oil in broiler chickens¹

Sources	Inclusion level	Optimal inclusion level	Positive effects ²	References
	Starter: 21.9 and 58.5 g/kg Finisher: 34.5 and 69 g/kg	Starter: 21.9 and 58.5 g/kg Finisher: 34.5 and 69 g/kg	Fatty acid composition of breast meat (lauric acid ↑)	Schiavone et al. (2017)
	30 g/kg	30 g/kg	Growth performance (FCR ↓), Serum parameter (TAC ↑)	Kim et al. (2020)
BSFL oil	Starter: 7, 14, 21, and 28 g/kg Finisher: 3.5, 7, 10.5, and 14 g/kg	Starter: 21 g/kg Finisher: 10.5 g/kg	Plasma parameter (T-SOD ↑, IL-2 ↑), Duodenum morphology (CD ↓, VH:CD ↑)	Chen et al. (2022)
	30, 60, and 90 g/kg	30 g/kg	Growth performance (BWG ↑, FI ↑, FCR ↓), Meat quality (drip loss ↓)	Kierończyk et al. (2023)
	5 g/kg	5 g/kg	Growth performance (FCR ↓)	Azizah et al. (2024)
	Starter: 30 g/kg Grower: 30 g/kg Finisher: 45.2 g/kg	-	No significance	Kierończyk et al. (2024)
	Starter: 34 g/kg Finisher: 51.5 g/kg	Starter: 34 g/kg Finisher: 51.5 g/kg	Growth performance (FCR ↓)	Aslam et al. (2025)

¹ BSFL, black soldier fly larvae; FCR, feed conversion ratio; TAC, total antioxidant capacity; T-SOD, total superoxide dismutase; IL-2, interleukin 2; CD, crypt depth; VH:CD; villus height to crypt depth ratio; BWG, body weight gain; FI, feed intake.

² The symbol '↑' represented an increase, while '↓' denoted a decrease.

However, substituting 50% and 100% of soybean oil with BSFL oil increased fatty acid composition of breast meat such as lauric acid and myristic acid (Schiavone et al., 2017). Chen et al. (2022) observed that substituting 25%, 50%, 75%, and 100% of soybean oil with BSFL oil did not show significant differences in ADG, ADFI, and FCR in broiler chickens. However, replacing 50% and 75% of soybean oil with BSFL oil increased total superoxide dismutase and interleukin-2 (Chen et al., 2022). Taken together, these findings indicate that BSFL oil can effectively replace conventional vegetable and animal fats in broiler diets without decreasing growth performance. Moreover, its high MCFA content, especially lauric acid, may confer additional benefits related to gut health and antimicrobial activity, making BSFL oil a promising sustainable lipid source for broiler production.

CONCLUSION AND FUTURE PERSPECTIVES

The continuous increase in global meat consumption, combined with the scarcity of traditional feed resources such as soybean meal and fish meal, underscores the urgent need

for sustainable protein and lipid alternatives in broiler diets. Among the various insects, particularly BSFL, have emerged as one of the most promising options due to their remarkable ability to convert organic waste into nutrient rich biomass containing high concentrations of protein, fat, and functional bioactive compounds. Numerous studies have demonstrated that BSFL meal and oil can partially replace conventional feed ingredients without compromising growth performance in broiler chickens. However, the variability in nutrient composition depending on rearing substrate, processing methods, and inclusion levels remains a challenge that requires further optimization. Large-scale industrialization will also depend on improving production efficiency, ensuring microbial safety, and addressing consumer perception and regulatory approval for insect-based feed ingredients. Therefore, BSFL represent a viable and environmentally responsible solution to the feed-food competition, offering strong potential to support a more sustainable and resilient broiler industry in the near future.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00210634).

ORCID

Ha Neul Lee <https://orcid.org/0009-0007-8352-4182>
 Jong Hyuk Kim <https://orcid.org/0000-0003-0289-2949>

REFERENCES

Adámková A, Kouřimská L, Borkovcová M, Kulma M, Mlček J 2016 Nutritional values of edible Coleoptera (*Tenebrio molitor*, *Zophobas morio* and *Alphitobius diaperinus*) reared in the Czech Republic. *Potravin Slovák J Food Sci* 10(1):663-671.

Adedeji MO, Habiba Z, Duweni T, Adeniji AA 2021 Effect of feeding graded levels of whole sugarcane waste with or without fishmeal and grasshopper meal supplementation in the diets of broilers. *Medicon Agric Environ Sci* 1(3):16-22.

Adegbenro M, Ayeni A, Akintomide AA, Atansuyi AJ, Agbede JO 2024 Productive performance and economic viability of broiler chicks fed black soldier fly (*Hermetia illucens*) larva meal-based diets. *Ann Ani Biol Res* 4(1):1-8.

Afam-Ibezim EM, Akinmutimi AH, Ugwuene MC, Daniel-Igwe G, Onabanjo RS 2025 Effect of full-fat black soldier fly larvae (*Hermetia illucens*) meal in the diet of broiler chickens. *Direct Res J Agric Food Sci* 13(1):98-102.

Ahmad I, Ullah M, Alkafafy M, Ahmed N, Mahmoud SF, Sohail K, Ullah H, Ghoneem WM, Ahmed MM, Sayed S 2022 Identification of the economics, composition, and supplementation of maggot meal in broiler production. *Saudi J Biol Sci* 29(6):103277.

Alafif MS, Hoffman LC, Cozzolino D, Abdollahi MR, Roura E, Nguyen AD, Soumeh EA 2025 Assessment of apparent metabolizable energy and ileal amino acid digestibility of full-fat black soldier fly larvae (*Hermetia illucens*) in broiler chickens. *Poult Sci* 104(10):105506.

Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Tahan AE, Tiwari R, Yatoo MI, Bhatt P, Khurana SK 2019 Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. *Animals* 9(8):573.

Amrul NF, Ahmad IK, Ahmad Basri NE, Suja F, Abdul Jalil NA, Azman NA 2022 A review of organic waste treatment using black soldier fly (*Hermetia illucens*). *Sustainability* 14(8):4565.

Aniebo AO, Owen OJ 2010 Effects of age and method of drying on the proximate composition of housefly larvae (*Musca domestica* Linnaeus) meal (HFLM). *Pak J Nutr* 9(5):485-487.

Armitage PD 1995 Chironomidae as food. Pages 423-435 In: *The Chironomidae: Biology and Ecology of Non-Biting Midges*. Armitage PD, Cranston PS, Pinder LCV eds. London, UK.

Aslam MR, Kierończyk B, Rawski M, Szymkowiak P, Stuperszablewska K, Kołodziejski P, Mikula R, Dankowiakowska A, Józefiak D 2025 Insect fat influences broiler performance, meat quality, and the cecal microbiota similarly to plant oils rather than animal fats. *Sci Rep* 15:18086.

Astuti DA, Komalasari K 2020 Feed and animal nutrition: insect as animal feed. *IOP Conf Ser Earth Environ Sci* 465:012002.

Attia YA, Bovera F, Asiry KA, Alqurashi S, Alrefaei MS 2023 Fish and black soldier fly meals as partial replacements for soybean meal can affect sustainability of productive performance, blood constituents, gut microbiota, and nutrient excretion of broiler chickens. *Animals* 13(7):2759.

Awoniyi TAM, Adebayo IA, Aletor VA 2004 A study of some erythrocyte indices and bacteriological analysis of broiler-chickens raised on maggot-meal based diets. *Int J Poult Sci* 3(6):386-390.

Azizah FL, Sjofjan O, Widodo E 2024 Assessing the impact of black soldier fly oil (*Hermetia illucens*) from various phases as feed additive on the growth performance and histomorphology of broiler chickens. *Adv Anim Vet Sci* 12(3):509-514.

Benzertiha A, Kierończyk B, Rawski M, Mikołajczak Z, Urbański A, Nogowski L, Józefiak D 2020 Insect fat in animal nutrition: a review. *Ann Anim Sci* 20(4):1217-1240.

Bexfield A, Nigam Y, Thomas S, Ratcliffe NA 2004 Detection and partial characterization of two antibacterial factors from the excretions/secretions of the medicinal maggot *Lucilia sericata* and their activity against methicillin-resistant *Staphylococcus aureus* (MRSA). *Microbes Infect*

6(14):1297-1304.

Bovera F, Loponte R, Pero ME, Cutrignelli MI, Calabro S, Musco N, Vassalotti G, Panettieri V, Lombardi P, Piccolo G, Di Meo C, Siddi G, Fliegerova K, Moniello G 2018 Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from *Hermetia illucens* larvae. *Res Vet Sci* 120:86-93.

Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia Y, Nizza A 2015 Yellow mealworm larvae (*Tenebrio molitor*, L.) as a possible alternative to soybean meal in broiler diets. *Br Poult Sci* 56(5):569-575.

Broza M, Halpern M 2001 Chironomid egg masses and *Vibrio cholerae*. *Nature* 412:40.

Callisto M, Gonçalves Jr JF, Graça MAS 2007 Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. *Rev Bras Zool* 24(2):442-448.

Chen X, Jin J, Hou F, Song B, Li Z, Zhao Y 2022 Effects of black soldier fly larvae oil on growth performance, immunity and antioxidant capacity, and intestinal function and microbiota of broilers. *J Appl Poult Res* 31(4):100292.

Choi YC, Park KH, Nam SH, Jang BG, Kim JH, Kim DW, Yu DJ 2013 The effect on growth performance of chicken meat in broiler chicks by dietary supplementation of black soldier fly larvae, *Hermetia illucens* (Diptera: Stratmyidae). *J Seric Entomol Sci* 51(1):30-35.

Cranston PS 2004 Insecta: Diptera, Chironomidae. In: Freshwater invertebrates of the Malaysian region. Pages 711-735.

Dakhel WH, Jaronski ST, Schell S 2020 Control of pest grasshoppers in North America. *Insects* 11(9):566.

Das A, Sutradhar R 1971 Systematic study of by-products of agro industrial origin for evolvement of economic poultry layers rations. *Indian Vet J* 48(9):941-946.

De Haas EM, Wagner C, Koelmans AA, Kraak MHS, Admiraal W 2006 Habitat selection by chironomid larvae: fast growth requires fast food. *J Anim Ecol* 75(1):148-155.

De Smet J, Wynants E, Cos P, Van Campenhout L 2018 Microbial community dynamics during rearing of black soldier fly larvae (*Hermetia illucens*) and impact on exploitation potential. *Appl Environ Microbiol* 84(9):e02722-17.

Dorper A, Veldkamp T, Dicke M 2021 Use of black soldier fly larvae and house fly in feed to promote sustainable poultry production. *J Insects Food Feed* 7(5):761-780.

Dourado LRB, Lopes PM, Silva VK, Carvalho FLA, Moura FAS, Silva LB, Giannecchini LG, Pinheiro SRF, Biagiotti D, Kimpara JM 2020 Chemical composition and nutrient digestibility of insect meal for broiler. *An Acad Bras Cienc* 92(3):e20200764.

Dzepe D, Magatsing O, Kuietche HM, Meutchieye F, Nana P, Tchuinkam T, Djouaka R 2021 Recycling organic wastes using black soldier fly and house fly larvae as broiler feed. *Circ Econ Sustain* 1:895-906.

Eggink KM, Lund I, Pedersen PB, Hansen BW, Dalsgaard J 2022 Biowaste and by-products as rearing substrates for black soldier fly (*Hermetia illucens*) larvae: effects on larval body composition and performance. *PLOS ONE* 17(9):e0275213.

Ei Boushy AR, Klaasen GJ, Kelelaars EH 1985 Biological conversion of poultry and animal waste to a feedstuff for poultry. *Worlds Poult Sci J* 41(2):133-145.

El-Kaiaty AM, Atta AERM, Dawa DT, Ragab T 2022 The impact of black soldier fly (*Hermetia illucens*) as feed supplementation on productive and physiological performance of broiler chickens. *World Vet J* 12(2):133-140.

Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S, Lalander C 2020 Fatty acid composition of black soldier fly larvae (*Hermetia illucens*): possibilities and limitations for modification through diet. *Waste Manag* 102(1):40-47.

Farchi S, De Sario M, Lapucci E, Davoli M, Michelozzi P 2017 Meat consumption reduction in Italian regions: health co-benefits and decreases in GHG emissions. *PLOS ONE* 12(8):e0182960.

Fascina VB, Carrijo AS, Souza KMR, Garcia AML, Kiefer C, Sartori JR 2009 Soybean oil and beef tallow in starter broiler diets. *Braz J Poult Sci* 11(4):249-256.

Finke MD 2007 Estimate of chitin in raw whole insects. *Zoo Biol* 26(2):105-115.

Ghaly AE, Alkoai FN 2009 The yellow mealworm as a novel source of protein. *Am J Agri Biol Sci* 4(4):319-331.

Godfray HCJ, Aveyard P, Garnett T, Hall JW, Key TJ, Lorimer J, Pierrehumbert RT, Scarborough P, Springmann M, Jebb SA 2018 Meat consumption, health, and the

environment. *Science* 361(6399):eaam5324.

Gong X, Le GW, Li YF 2005 Antibacterial spectrum of antibacterial peptides from *Musca domestica* larvae and synergic interaction between the peptides and antibiotics. *Wei Sheng Wu Xue Bao* 45(4):516-520.

Habib MAB, Hasan MR 1995 Evaluation of silkworm pupae as dietary protein source for Asian catfish *Clarias batrachus* (L.) fingerling. *Bangladesh J Aquac* 17:1-7.

Hamidoghi A, Falahatkar B, Khoshkholgh M, Sahragard A 2014 Production and enrichment of chironomid larva with different levels of vitamin C and effects on performance of Persian sturgeon larvae. *N Am J Aquac* 76(3):289-295.

Harikrishnan R, Kim JS, Balasundaram C, Heo MS 2012 Dietary supplementation with chitin and chitosan on haematology and innate immune response in *Epinephelus bruneus* against *Philasterides dicentrarchi*. *Exp Parasitol* 131(1):116-124.

Haskaraca G, İnal E, Erdem GM, Recalar EN, Eskiler GG, Ozdmir A, Yildiz S, Calikoglu T, Ayhan Z 2025 Impact of killing and drying methods on physicochemical and functional properties of black soldier fly larvae (BSFL) oil. *Food Chem* 489:144978.

Heita D, Mupangwa J, Shipanden MNT, Charamba V, Kahumba A 2023 Effects of dietary inclusion of black soldier fly (*Hermetia illucens*) larvae meal on growth performance and carcass yield of broilers. *Int Sci Technol J Namibia* 16:5-15.

Herawati, Permata FS 2023 The black soldier fly maggot powder as a feed additive increased the bodyweight and the percentage of palatability of broiler chicken. In: Proceedings of the 2022 Brawijaya International Conference, Bali, Indonesia.

Hossain SM, Blair R 2007 Chitin utilisation by broilers and its effect on body composition and blood metabolites. *Br Poult Sci* 48(1):33-38.

Hwang SY, Bae G, Choi SK 2015 Preferences and purchase intention of *Tenebrio molitor* (mealworm) according to cooking method. *Korean J Culin Res* 21(1):100-115.

Jang WW, Chung TH, Choi IH 2019 Growth performance and economic evaluation of insect feed powder-fed ducks. *J Environ Sci Int* 28(8):709-712.

Jansen-Alves C, Bonemann DH, Trindade TMLS, da Fonseca Antunes B, Belletti CP, Santos RS, Pedra NS, Oses JP, da Silva Gonçalves R, Nörnberg SD, Spanevello RM, da Rosa Zavareze E, de Pereira CMP 2025 Exploring housefly (Diptera: Muscidae) larvae as a sustainable source of oil: a potential non-edible feedstock high in unsaturated fatty acids. *J Asia-Pac Entomol* 28(3):102429.

Jayanegara A, Sholikin MM, Sabila DAN, Suharti S, Astuti DA 2017 Lowering chitin content of cricket (*Gryllus assimilis*) through exoskeleton removal and chemical extraction and its utilization as a ruminant feed *in vitro*. *Pak J Biol Sci* 20(10):523-529.

Katidi A, Xypolitaki K, Vlassopoulos A, Kapsokefalou M 2023 Nutritional quality of plant-based meat and dairy imitation products and comparison with animal-based counterparts. *Nutrients* 15(2):401.

Kaya M, Lelešius E, Nagrockaite R, Sargin I, Arslan G, Mol A, Baran T, Can E, Bitim B 2015 Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. *PLOS ONE* 10:e0115531.

Khamis FM, Ombura FLO, Akutse KS, Subramanian S, Mohamed SA, Fiaboe KKM, Sajuntha W, Van Loon JJA, Dicke M, Dubois T, Ekesi S, Tanga CM 2020 Insights in the global genetics and gut microbiome of black soldier fly, *Hermetia illucens*: implications for animal feed safety control. *Front Microbiol* 11:1538.

Khan S, Khan RU, Alam W, Sultan A 2018 Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. *J Anim Physiol Anim Nutr* 102(2):e662-e668.

Khempaka S, Chitsatchapong C, Molee W 2011 Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. *J Appl Poult Res* 20(1):1-11.

Khusro M, Andrew NR, Nicholas A 2012 Insects as poultry feed: a scoping study for poultry production systems in Australia. *World's Poult Sci J* 68(3):435-446.

Kierończyk B, Kaczmarek SA, Hejdysz M, Szymkowiak P, Aslam MR, Rawski M, Kołodziejski PA, Mikuła R, Stuper-Szablewska K, Józefiak D 2024 Implementation of a metabolizable energy regression model for black soldier fly

larvae fat in broiler chicken diets: effect on growth performance, nutrient digestibility, and selected physiological indices. *J Anim Feed Sci* 33(4):493-503.

Kierończyk B, Rawski M, Mikołajczak Z, Szymkowiak P, Stuper-Szablewska K, Józefiak D 2023 Black soldier fly larva fat in broiler chicken diets affects breast meat quality. *Animals* 13(7):1137.

Kierończyk B, Sypieńowski J, Rawski M, Czekała W, Świątkiewicz S, Józefiak D 2020 From waste to sustainable feed material: the effect of *Hermetia illucens* oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. *Ann Anim Sci* 20(1):157-177.

Kim B, Bang HT, Jeong JY, Kim MJ, Kim KH, Chun JL, Ji SY 2021 Effects of dietary supplementation of black soldier fly (*Hermetia illucens*) larvae oil on broiler health. *J Poult Sci* 58(4):222-229.

Kim B, Kim HR, Beak YC, Ryu CH, Ji SY, Jeong JY, Kim M, Jung H, Park SH 2022 Evaluation of microwave-dried black soldier fly (*Hermetia illucens*) larvae meal as a dietary protein source in broiler chicken diets. *J Insects Food Feed* 8(9):977-987.

Kim CH, Park SY, Lee YC, Kim JH, Byun BK 2019 Mass rearing conditions for the production of *Gryllus bimaculatus* De Geer (Orthoptera: Gryllidae). *Korean J Appl Entomol* 58(1):69-76.

Kim JG, Choi YC, Choi JY, Kim WT, Jeong GS, Park KH, Hwang SJ 2008 Ecology of the black soldier fly, *Hermetia illucens* (Diptera: Stratidae) in Korea. *Korean J Appl Entomol* 47:337-343.

Kim YB, Kim DH, Jeong SB, Lee JW, Kim TH, Lee HG, Lee KW 2020 Black soldier fly larvae oil as an alternative fat source in broiler nutrition. *Poult Sci* 99(6):3133-3143.

Kirimi JG, Riungu JN, Kiogorab D, Marete EN, Kagendo D, Dey P, Oyoo VA 2023 Growth performance and carcass characteristics of broiler chicken fed on black soldier fly larvae meal: a product of fecal sludge waste management. *J Water Sanit Hyg Dev* 13(9):635.

Koh K, Iwamae S 2013 Chitinolytic activity of mucosal enzymes in different parts of the digestive tract in broilers. *J Poult Sci* 50(1):65-67.

Koide SS 1998 Chitin-chitosan: properties, benefits and risks. *Nutr Res* 18(6):1091-1101.

Konopova B, Smykal V, Jindra M 2011 Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. *PLOS ONE* 6(12):e28728.

Kotake-Nara E, Yamamoto K, Nozawa M, Miyashita K, Murakami T 2002 Lipid profiles and oxidative stability of silkworm pupal oil. *J Oleo Sci* 51(11):681-690.

Kumar D 2016 Chironomus larvae culture: a boon to aquaculture sector. *Int J Curr Sci Res* 2(1):239-251.

La Mantia MC, Cali M, Jasinski LP, Contò M, Zilio DZ, Renzi G, Amato MG 2024 Black soldier meal in feed could adversely affect organic broiler meat quality when used for the total or half replacement of diet proteins. *Poult Sci* 3(2):66-84.

Lee DY, Lee SY, Yun SH, Lee J, Mariano Jr E, Park J, Choi Y, Han D, Kim JS, Hur SJ 2024 Current technologies and future perspective in meat analogs made from plant, insect, and mycoprotein materials: a review. *Food Sci Ani Resour* 44(1):1-18.

Lee HN, Yeom GL, Kim YB, Yum KH, Park JY, Lee WT, Seo HS, Lee SY, Kim JH 2024 Prospects of using insects as alternative protein sources in broiler diets. *J Insects Food Feed* 10(12):2107-2141.

Lee HN, Yum KH, Yeom GL, Kim YB, Park JY, Park S, Park G, Choi Y, Choi J, Kim JH 2024 Effects of inclusion of black soldier fly larvae on growth performance, relative organ weight, and meat quality of broiler chickens. *Poult Sci* 104(7):105208.

Liu Q, Ni X, Chen C, Xu J, Pei E, Yang A, Xu M, Wang X, Fu S, Yu R 2025 Exploring the impact of dietary EPA/DHA supplementation on lipid metabolism of *Tenebrio molitor* larvae. *Insects* 16(10):1007.

Liu X, Chen X, Wang H, Yang Q, ur Rehman K, Ki W, Cai M, Li Q, Mazza L, Zhang J, Yu Z, Zheng L 2017 Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. *PLOS ONE* 12:e0182601.

Lock ER, Arsiwalla T, Waagbø R 2016 Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (*Salmo salar*) postsmolt. *Aquac Nutr* 22(6):1202-1213.

Lu S, Taethaisong N, Meethip W, Surakhunthod J, Sinpru B, Sroichak T, Archa P, Thongpea S, Paengkoum S, Purba

RAP, Paengkoum P 2022 Nutritional composition of black soldier fly larvae (*Hermetia illucens* L.) and its potential uses as alternative protein sources in animal diets: a review. *Insects* 13(9):831.

Lytle JS, Lytle TF, Ogle JT 1990 Polyunsaturated fatty acid profiles as a comparative tool in assessing maturation diets of *Penaeus vannamei*. *Aquac* 89(3-4):287-299.

Makker HPS, Tran G, Heuzé V, Ankers P 2014 State-of-the-art on use of insects as animal feed. *Anim Feed Sci Technol* 197:1-33.

Martínez-Pineda M, Juan T, Antoniewska-Krzeska A, Vercet A, Abenoza M, Yagüe-Ruiz C, Rutkowska J 2024 Exploring the potential of yellow mealworm (*Tenebrio molitor*) oil as a nutraceutical ingredient. *Foods* 13(23):3867.

Massimo C, Lucio T, Jesus MA, Giovanni L, Caramia GM 2009 Extra virgin olive oil and oleic acid. *Nutr Clín Diet Hosp* 29(3):12-24.

Mat K, Abdul Kari Z, Rusli ND, Rahman MM, Harun HC, Al-Amsyar SM, Mohd Nor MF, Dawood MAO, Hassan AM 2022 Effects of the inclusion of black soldier fly larvae (*Hermetia illucens*) meal on growth performance and blood plasma constituents in broiler chicken (*Gallus gallus domesticus*) production. *Saudi J Biol Sci* 29(2):809-815.

Miah MY, Singh Y, Cullere M, Tent S, Zotte AD 2020 Effect of dietary supplementation with full-fat silkworm (*Bombyx mori* L.) chrysalis meal on growth performance and meat quality of Rhode Island Red×Fayoumi crossbred chickens. *Ital J Anim Sci* 19(1):447-456.

Moore BC, Martinez E, Gay JM, Rice DH 2003 Survival of *Salmonella enterica* in freshwater and sediments and transmission by the aquatic midge *Chironomus tentans* (Chironomidae: Diptera). *Appl Environ Microbiol* 69(8):4556-4560.

Muraro T, Lalanne L, Pelozuelo L, Calas-List D 2024 Mating and oviposition of a breeding strain of black soldier fly *Hermetia illucens* (Diptera: Stratiomyidae): polygynandry and multiple egg-laying. *J Insects Food Feed* 10:1423-1435.

Murawska D, Daszkiewicz T, Sobotka W, Gesek M, Witkowska D, Matusevičius P, Bakuła T 2021 Partial and total replacement of soybean meal with full-fat black soldier fly (*Hermetia illucens* L.) larvae meal in broiler chicken diets: impact on growth performance, carcass quality and meat quality. *Animals* 11(9):2715.

Naser MN, Roy D 2012 Feeding ecology of *Chironomus* larvae (Insecta: Diptera) collected from different habitats of Dhaka, Bangladesh. *Bangladesh J Zool* 40(1):129-133.

Ncobela CN, Chimonyo M 2015 Potential of using non-conventional animal protein sources for sustainable intensification of scavenging village chickens: a review. *Anim Feed Sci Technol* 208:1-11.

Nginya ES, Ondiek JO, King'ori AM, Nduko JM 2019 Evaluation of grasshoppers as a protein source for improved indigenous chicken growers. *Livest Res Rural Dev* 31(1):2.

Nikkhah A, Van Haute S, Jovanovic V, Jung H, Dewulf J, Velickovic TC, Ghnimi S 2021 Life cycle assessment of edible insects (*Protaetia brevitarsis seulensis* larvae) as a future protein and fat source. *Sci Rep* 11:14030.

Niu Y, Zheng D, Yao B, Cai Z, Zhao Z, Wu S, Cong P, Yang D 2017 A novel bioconversion for value-added products from food waste using *Musca domestica*. *Waste Manag* 61:455-460.

Nogales-Mérida S, Gobbi P, Józefiak D, Mazurkiewicz J, Dudek K, Rawski M, Kierończyk B, Józefiak A 2019 Insect meals in fish nutrition. *Rev Aquac* 11(4):1080-1103.

Okur N 2020 The effects of soy oil, poultry fat and tallow with fixed energy: protein ratio on broiler performance. *Arch Anim Breed* 63:91-101.

Onifade AA, Oduguwa OO, Fanimo AO, Abu AO, Olutunde TO, Arije A, Babatunde GM 2001 Effects of supplemental methionine and lysine on the nutritional value of housefly larvae meal (*Musca domestica*) fed to rats. *Bioresour Technol* 78(2):191-194.

Onsongo VO, Osuga IM, Gachuiiri CK, Wachira AM, Miano DM, Tanga CM, Ekesi S, Nakimbugwe D, Fiaboe KKM 2018 Insects for income generation through animal feed: effects of dietary replacement of soybean and fish meal with black soldier fly larvae meal on broiler growth and economic performance. *J Econ Entomol* 111(4):1966-1973.

Oonincx DGAB, Van Itterbeeck J, Heetkamp MJW, Van Den Brand H, Van Loon JJA, Van Huis A 2010 An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. *PLOS ONE* 5(12):e14445.

Ou J, Wang Y, Li Y, Liu S, Kou X, Ren F, Wang X, Zhang

H 2025 Recent advances in mining hypolipidemic bioactive compounds from animal-derived foods. *Food Funct* 16:8627-8646.

Pappula R, Lakshmi V, Bhukya P, Devanaboyina N, Gurram S 2021 Supplementation of lauric acid, probiotic and their combination on performance and immune response of commercial broiler chicken. *Indian J Anim Nutr* 38(1):55-60.

Park BS, Kang HK, Lee ES, Park TJ, Yu TG, Park BS 2003 Feed nutritional value of fly larvae. *Ann Anim Resour Sci* 14:67-75.

Park SO 2023 Effect of feeding a diet containing housefly (*Musca domestica*) larvae extracts on growth performance in broiler chickens. *Czech J Anim Sci* 68(1):44-51.

Park SO, Shin JH, Choi WK, Park BS, Oh JS, Jang A 2010 Antibacterial activity of housefly-maggot extracts against MRSA (Methicillin-resistant *Staphylococcus aureus*) and VRE (Vancomycin-resistant *Enterococci*). *J Environ Biol* 31(5):865-871.

Park YK, Lee HG, Choi YC 2013 Effects of rearing density on food consumption, adult mortality and mean number of hatchlings of *Gryllus bimaculatus* (Orthoptera: Gryllidae). *J Seric Entomol Sci* 51(2):89-94.

Phesatcha B, Phesatcha K, Matra M, Wanapat M 2023 Cricket (*Gryllus bimaculatus*) meal pellets as a protein supplement to improve feed efficiency, ruminal fermentation and microbial protein synthesis in Thai native beef cattle. *Anim Biosci* 36(9):1384-1392.

Podder R, Nath S, Faggio C, Modak BK 2018 A study on the growth and biomass of Chironomus larvae in different food media. *Uttar Pradesh J Zool* 38(1):20-25.

Pornsuwan R, Poothachaya P, Bunchalee P, Hanboonsong Y, Cherdthong A, Tengjaroenkul B, Boonkum W, Wongtang-tintharn S 2023 Evaluation of the physical characteristics and chemical properties of black soldier fly (*Hermetia illucens*) larvae as a potential protein source for poultry feed. *Animals* 13(14):2244.

Prajapati HA, Yadav K, Hanamasagar Y, Kumar MB, Khan T, Belagalla N, Thomas V, Jabeen A, Gomadhi G, Malathi G 2024 Impact of climate change on global agriculture: challenges and adaptation. *Int J Environ Clim Change* 14(4):327-329.

Pretorius Q 2011 The evaluation of larvae of *Musca domestica* (common housefly) as protein source for broiler production. PhD dissertation, Stellenbosch University, Stellenbosch, South Africa. 20-23.

Puvvada YS, Vankawalapati S, Sukhavasi S 2012 Extraction of chitin and chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. *Int Curr Pharm J* 1(9):258-263.

Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH 2018 Trends in global agricultural land use: implications for environmental health and food security. *Annu Rev Plant Biol* 69(1):789-815.

Ramos-Elorduy J, González EA, Hernández AR, Pino JM 2002 Use of *Tenebrio molitor* (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. *J Econ Entomol* 95(1):214-220.

Rastegaripour F, Tavassoli A, Babaeian M, Fernández-Gálvez J, Caballero-Calvo A 2024 Assessing the impacts of climate change on water resource management and crop patterns in Eastern Iran. *Agric Water Manag* 295(30):108774.

Ravindran V, Abodollahi MR, Bootwalla SM 2014 Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. *Poult Sci* 93(10):2567-2577.

Rawski M, Mazurkiewicz J, Kierończyk B, Józefiak D 2020 Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. *Animals* 10(11):2119.

Riekkinen K, Väkeväinen K, Korhonen J 2022 The effect of substrate on the nutrient content and fatty acid composition of edible insects. *Insects* 13(7):590.

Rodriguez-Ortiz LM, Hincapie CA, Hincapie-Llanos GA, Osorio M 2024 Potential uses of silkworm pupae (*Bombyx mori* L.) in food, feed, and other industries: a systematic review. *Front Insect Sci* 4:1445636.

Rodríguez-Párraga J, Botella-Martínez CM, Viuda-Martos M, Santos EM, Pérez-Álvarez JÁ, Lucas-González R, Fernández-López J 2025 Enhancing pork patties with cricket (*Acheta domesticus*) powder: a feasibility study on quality attributes. *Appl Sci* 15(20):11260.

Rouf MA, Rigney MM 1993 Bacterial floras in larvae of the

lake fly *Chironomus plumosus*. *Appl Environ Microbiol* 59(4):1236-1241.

Schiavone A, Cullere M, De Marco M, Meneguz M, Biasato I, Bergagna S, Dezzutto D, Gai F, Dabbou S, Gasco L, Dalle Zotte A 2017 Partial or total replacement of soybean oil by black soldier fly larvae (*Hermetia illucens* L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. *Ital J Anim Sci* 16(1):93-100.

Schiavone A, Dabbou S, De Marco M, Cullere M, Biasato I, Biasibetti E, Capucchio MT, Bergagna S, Dezzutto D, Meneguz M, Gai D, Dalle Zotte A, Gasco L 2018 Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. *Animals* 12(10):2032-2039.

Schiavone A, Dabbou S, Petracci M, Zampiga M, Sirri F, Biasato I, Gai F, Gasco L 2019 Black soldier fly defatted meal as a dietary protein source for broiler chickens: effects on carcass traits, breast meat quality and safety. *Animal* 13(10):2397-2405.

Shaw PC, Mark KK 1980 Chironomid farming: a means of recycling farm manure and potentially reducing water pollution in Hong Kong. *Aquac* 21(2):155-163.

Shorstkii I, Comiotto Alles M, Parniakov O, Smetana S, Aganovic K, Sosnin M, Toepfl S, Heinz V 2022 Optimization of pulsed electric field assisted drying process of black soldier fly (*Hermetia illucens*) larvae. *Dry Technol* 40(3):595-603.

Siddiqui SA, Ristow B, Rahayu T, Putra NS, Yuwono NW, Nisa K, Mategeko B, Smetana S, Saki M, Nawaz A, Nagdalian A 2022 Black soldier fly larvae (BSFL) and their affinity for organic waste processing. *Waste Manag* 140(1):1-13.

Siddiqui SA, Süfer Ö, Koç GÇ, Lutuf H, Rahayu T, Castro-Muñoz R, Fernando I 2025 Enhancing the bioconversion rate and end products of black soldier fly (BSF) treatment: a comprehensive review. *Environ Dev Sustain* 27(5):9673-9741.

Singh A, Kumari K 2019 An inclusive approach for organic waste treatment and valorisation using black soldier fly larvae: a review. *J Environ Manag* 251(1):109569.

Smith K, Watson AW, Lonnie M, Peeters W, Oonincx D, Tsoutsoura N, Simon-Miquel G, Szepe K, Cochetel N, Pearson AG, Witard O, Salter AM, Bennett M, Corfe BM 2024 Meeting the global protein supply requirements of a growing and ageing population. *Eur J Nutr* 63:1425-1433.

Somporn N, Poothachaya P, Puangsap W, Pintaphrom N, Srikha T, Tenggaroenkul B 2024 Evaluation of black soldier fly larvae oil as a feed ingredient for broiler chickens: effects on performance, carcass traits, meat characteristics, and blood parameters. *Front Anim Sci* 5:1496763.

Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH, Noh MY, Park YK, Kim SA, Kim YW, Jung WJ 2018 Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, *Tenebrio molitor*. *Entomol Res* 48(3):227-233.

Srisuksai K, Limudomporn P, Kovitvadhi U, Thongsuwan K, Imaram W, Lertchaiyongphanit R, Sareepoch T, Kovitvadhi A, Fungfuang W 2024 Physicochemical properties and fatty acid profile of oil extracted from black soldier fly larvae (*Hermetia illucens*). *Vet World* 17(3):518-526.

Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, De Haan C 2006 Livestock's long shadow: environmental issues and options. Rome: Food Agric Organ.

St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, McGuire MA, Mosley EE, Hardy RW, Sealey W 2007 Fly prepupae as a feedstuff for rainbow trout, *Oncorhynchus mykiss*. *J World Aquac Soc* 38(1):59-67.

Sulistiyarto B, Christiana I, Yulintine Y 2014 Developing production technique of bloodworm (*Chironomidae larvae*) in floodplain waters for fish feed. *Int J Fish Aquac* 6(4):39-45.

Suryati T, Julaeha E, Farabi K, Ambarsari H, Hidayat AT 2023 Lauric acid from the black soldier fly (*Hermetia illucens*) and its potential applications. *Sustainability* 15(13):10383.

Tanga CM, Waweru JW, Tola YH, Onyoni AA, Khamis FM, Ekesi S, Paredes JC 2021 Organic waste substrates induce important shifts in gut microbiota of black soldier fly (*Hermetia illucens* L.): coexistence of conserved, variable, and potential pathogenic microbes. *Front Microbiol* 12:635881.

Terés S, Barceló-Coblijn G, Benet M, Álvarez R, Bressani R, Halver JE, Escrivá PV 2008 Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. *Proc Natl Acad Sci* 105(37):13811-13816.

Thipkonglars N, Taparhudee W, Kaewnern M, Lawonyawut K 2010 Cold preservation of chironomid larvae (*Chironomus fuscipes* Yamamoto, 1990): nutritional value and potential for climbing perch (*Anabas testudineus* Bloch, 1792) larval nursing. *J Fish Environ* 34(2):1-13.

Ushakova NA, Brodskii ES, Kovalenko AA, Bastrakov AI, Kozlova AA, Pavlov DS 2016 Characteristics of lipid fractions of larvae of the black soldier fly *Hermetia illucens*. *Dokl Biochem Biophys* 468:209-212.

Veldkamp T, Bosch G 2015 Insects: a protein-rich feed ingredient in pig and poultry diets. *Anim Front* 5(2):45-50.

Verma KK, Song XP, Kumari A, Jagadesh M, Singh SK, Bhatt R, Singh MS, Seth CS, Li YR 2025 Climate change adaptation: challenges for agricultural sustainability. *Plant Cell Environ* 48(4):2522-2533.

Wang D, Zhai SW, Zhang CX, Bai YY, An SH, Xu YN 2005 Evaluation on nutritional value of field crickets as a poultry feedstuff. *Ani Biosci* 18(5):667-670.

Wang D, Bai YY, Li JH, Zhang CX 2008 Nutritional value of the field cricket (*Gryllus testaceus* Walker). *Insect Sci* 11(4):275-283.

Wang L, Cheng C, Yu Z, Guo L, Wan X, Xu J, Xing X, Yang J, Kang J, Deng Q 2025 Conversion of α -linolenic acid into n-3 long-chain polyunsaturated fatty acids: bioavailability and dietary regulation. *Crit Rev Food Sci Nutr* 65(29):6470-6502.

Wu RA, Ding Q, Yin L, Chi X, Sun N, He R, Luo L, Ma H, Li Z 2020 Comparison of the nutritional value of mysore thorn borer (*Anoplophora chinensis*) and mealworm larva (*Tenebrio molitor*): amino acid, fatty acid, and element profiles. *Food Chem* 323(1):126818.

Xiao X, Jin P, Zheng L, Cai M, Yu Z, Yu J, Zhang J 2018 Effects of black soldier fly (*Hermetia illucens*) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (*Pelteobagrus fulvidraco*). *Aquac Res* 49(4):1569-1577.

Xiao S, Liu W, Zhang S, Schroyen M 2025 The role of maternal dietary protein on livestock development, production and health. *Anim Reprod Sci* 276:107835.

Yu G, Chen Y, Yu Z, Cheng P 2009 Research progress on the larvae and prepupae of black soldier fly *Hermetia illucens* used as animal feedstuff. *Chin Bull Entomol* 46(1):41-45.

Yuan Q, Xie F, Huang W, Hu M, Yan Q, Chen Z, Zheng Y, Liu L 2022 The review of alpha-linolenic acid: sources, metabolism, and pharmacology. *Phytother Res* 36(1):164-188.

Zeitz JO, Fennhoff J, Kluge H, Stangl GI, Eder K 2015 Effects of dietary fats rich in lauric and myristic acid on performance, intestinal morphology, gut microbes, and meat quality in broilers. *Poult Sci* 94(10):2404-2413.

Zulkifli NFM, Seok-Kian AY, Seng LL, Mustafa S, Kim YS, Shapawi R 2022 Nutritional value of black soldier fly (*Hermetia illucens*) larvae processed by different methods. *PLOS ONE* 17:e0263924.

Received Nov. 15, 2025, Revised Nov. 19, 2025, Accepted Nov. 23, 2025