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INTRODUCTION

Modern broiler production is showing exceptionally rapid 
growth and a markedly shortened production cycle, with 
commercial birds reaching market weight in only 35 to 42 days 
post-hatch (Uni et al., 2012). Consequently, the approximately 
21-day incubation period represents more than one- third of the 
bird’s entire lifespan, making embryogenesis a critical window 
that determines not only hatchability but also post-hatch 
performance, robustness, and immune competence (Givisiez et 
al., 2020). During this relatively brief developmental interval, 
the embryo undergoes organogenesis, myofiber formation, and 
the establishment of metabolic regulatory systems, processes 
that rely entirely on the nutrient reserves contained within the 
egg and are shaped by the maternal age, genetic line, and 
physiological condition of the breeder hen (King'ori, 2011; 
Raffaelli and Stern, 2020; Ding et al., 2022). The fertile egg 
functions as a self-contained biological system composed of the 
embryo, yolk, albumen, and shell, each contributing essential 

substrates and structural support throughout incubation (Wong 
and Uni, 2020). Because these resources are fixed at the time 
of lay and cannot be replenished, the embryo must meet all 
metabolic and biosynthetic needs using a limited nutrient 
reserve (Foye, 2005). The major factor of this limitation is 
maternal aging, which alters yolk lipid composition, albumen 
viscosity, shell quality, and the supply of micronutrients, 
thereby imposing additional metabolic challenges on the 
developing embryo (Alo et al., 2024). In response to the 
limited and nonrenewable nutrient environment of the egg and 
to mitigate the adverse effects of breeder aging, in ovo feeding 
(IOF) has emerged as an innovative strategy to enhance 
embryonic nutrition (Uni and Ferket, 2004). Initially IOF 
introduced as a route for vaccine delivery, IOF was later 
adapted for the administration of bioactive compounds, 
nutrients, and probiotics during late incubation (Uni and Ferket, 
2004). Typically, IOF is performed between embryonic day 
(ED) 17 and 19 when the digestive tract and absorptive 
pathways are functionally competent, and depending on the 

Embryonic Development and Nutritional Modulation through In Ovo Feeding in Broiler Chickens

Ju Yeong Park1 and Jong Hyuk Kim2†

1Graduate Student, Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
2Professor, Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea

ABSTRACT This review evaluates current knowledge on in ovo feeding (IOF) as a nutritional strategy to improve embryonic 
development and post-hatch performance in broiler chickens. Modern broiler chickens exhibit rapid growth and substantial 
early metabolic demand, making the embryonic period a critical phase in which nutrient availability strongly influences 
physiological maturation. Concurrently, eggs from older breeder hens often display altered yolk composition, reduced albumen 
quality, and weakened antioxidant status, collectively imposing nutritional and metabolic constraints on the developing 
embryos. IOF has emerged as a promising approach to alleviate these limitations by delivering nutrients, amino acids, vitamins, 
probiotics, or other bioactive compounds directly into specific embryonic compartments during late incubation. Evidence from 
numerous studies indicates that IOF promotes gastrointestinal maturation, enhances immune function, supports metabolic 
transitions, and improves early growth performance. Administration of amino acids, particularly arginine, tryptophan, and 
threonine, further contributes to gut health, muscle development, and antioxidant capacity. Despite these demonstrated benefits, 
variation in injection timing, dosage, and absorption dynamics underscores the need for standardized protocols and deeper 
mechanistic understanding. Overall, this review provides an updated synthesis of current findings and outlines practical 
considerations for the effective application of IOF as a nutritional strategy to enhance embryonic development, improve chick 
quality, and alleviate breeder-age-related constraints in modern broiler production.

(Key words: arginine, broiler chicken, fertile egg, in ovo feeding, threonine, tryptophan)

†To whom correspondence should be addressed : jonghyuk@chungbuk.ac.kr



Park and Kim : In Ovo Feeding and Embryonic Development in Broiler Chickens272

objectives of supplementation, substances may be deposited 
into the yolk sac, amniotic cavity, or air cell (Pandey et al., 
2021). Numerous studies have demonstrated that IOF of amino 
acids, vitamins, minerals, and probiotics can enhance gastro-
intestinal maturation, increase digestive enzyme activity, 
improve oxidative defense, and support superior early growth 
performance (Foye et al., 2006; Bakyaraj et al., 2012; Yadgary 
et al., 2013). In addition to its short-term developmental 
impacts, IOF is increasingly viewed as a tool for early 
metabolic imprinting, with the potential to modulate gene 
expression, epigenetic marks, and long-term physiological 
outcomes (Jha et al., 2019). However, several limitations exist 
in the practical application of IOF. Optimal dosing, injection 
volume, and site-specific absorption dynamics remain major 
variables requiring standardization. Additionally, concerns 
regarding hatchability, contamination, and mechanical injury 
underscore the need for refined methodology and clearer 
mechanistic understanding Optimal dosing, injection volume, 
and site-specific absorption dynamics remain major variables 
requiring standardization (Das et al., 2021). Therefore, this 
review integrates current evidence from developmental phy-
siology and nutritional science to assess IOF as a strategy that 
extends beyond nutrient supplementation, influencing early-life 
physiological development and subsequent growth performance 
(Jha et al., 2019).

EMBRYONIC DEVELOPMENT

1. EmbryonicGrowthandPhysiological Development

Embryonic development represents more than one-third of 
the broiler’s lifespan, making it a critical period in which 
minor disturbances can substantially influence post-hatching 
performance and overall productivity (Givisiez et al., 2020). 
In avian species, development begins with a fertilized egg 
containing a blastodisc positioned on the yolk surface, which 
subsequently differentiates into the blastoderm through the 
formation of epiblast and hypoblast layers (Eyal-Giladi and 
Kochav, 1976). Early in development, the embryo lies 
flattened atop the yolk but progressively reorients into a 
vertical position as it grows within the yolk mass (Starck, 
2020). During the first 1 to 2 days, epiblast cells proliferate 
and migrate to form the primitive streak, from which the 

ectoderm, mesoderm, and endoderm emerge and establish the 
foundation of organogenesis (Cinnamon et al., 2025). 
Embryonic development proceeds through a sequential pattern 
involving primitive streak formation, establishment of the 
vascular system, organogenesis, ossification, and feather 
formation, ultimately resulting in a fully developed chick at 
hatch (Davey and Tickle, 2007). The ectoderm differentiates 
into the nervous system, skin, and feathers, while the 
mesoderm gives rise to the skeletal, muscular, and circulatory 
systems, and the endoderm develops into the digestive and 
respiratory systems (Raffaelli and Stern, 2020). The 
embryonic heartbeat begins around days 2 to 3, followed by 
the formation of elbow, knee joints, and the beak by days 5 
to 6 (Hamburger and Hamilton, 1992; Naieb et al., 2013). 
Subsequently, feathers and claws emerge between days 11 to 
14, and the internal organs migrate into the abdominal cavity 
from days 15 to 17, completing major structural formation 
(Hamburger and Hamilton, 1992). During this period, the yolk 
sac, amniotic fluid, and chorioallantoic membrane (CAM) 
develop from the ectoderm and support the embryo by 
providing nutrients and removing waste products (Baggott, 
2009). Around ED 17, the embryo begins ingesting amniotic 
fluid, a process that coincides with rapid structural maturation 
of the intestinal mucosa and villi (Givisiez et al., 2020). 
During this late phase of development, oxygen demand 
increases, yet oxygen diffusion remains limited by the 
eggshell. Consequently, the embryo repositions its head 
toward the air cell around ED 18 to prepare for pulmonary 
respiration (Tona et al., 2003; Dayan et al., 2023). Skeletal 
muscle development accelerates markedly between ED 15 and 
20, peaking shortly before hatch (Fisher, 1958). Myogenesis 
is regulated by myogenic regulatory factors such as myoblast 
determination protein (MyoD) and myogenic factor, which act 
within myotome-derived precursor cells to drive myogenic 
commitment and differentiation (Ouyang et al., 2017). 
Extensive myoblast proliferation occurs between ED 5 and 12, 
after which these cells fuse to form primary myotubes that 
subsequently develop into secondary fibers (Velleman, 2007). 
Maturation of myofibers is characterized by sarcomere 
organization and alignment of Z-lines (Velleman, 2007). 
Muscle growth consists of hyperplasia and hypertrophy, where 
hyperplasia occurs primarily during embryogenesis, and the 
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number of muscle fibers established during this period does 
not increase after hatching (Smith, 1963). Post-hatch muscle 
accretion is mainly due to hypertrophy, supported by the 
fusion of satellite cells derived nuclei into existing muscle 
fibers (Allen et al., 1979). Satellite cells, located between the 
basal lamina and sarcolemma, remain essential for postnatal 
muscle repair and hypertrophic expansion (Mauro, 1961).

2. Metabolic Transitions during Incubation

In the early stages of embryonic development, oxygen 
availability is limited due to the immature state of the CAM 
(Moran, 2007). As a result, the embryo initially relies on 
anaerobic glycolysis supported by a small endogenous carbo-
hydrate reserve (Givisiez et al., 2020). Glucose derived from 
the yolk and albumen is metabolized to pyruvate and 
subsequently converted to lactate. Until sufficient oxygen 
becomes available, lactate accumulates and is later trans-
ported to the liver for gluconeogenesis (Christensen et al., 
2003). This Cori cycle remains active during the first week 
of incubation, when CAM function is still insufficient (De 
Oliveira, 2007). Because carbohydrates in the yolk are 
limited, they sustain embryonic metabolism only during the 
initial days of incubation (Freeman and Vince, 1974). By 
approximately day 8 of incubation, the CAM becomes 
functional, allowing efficient gas exchange and ensuring the 
increasing oxygen requirements of the rapid developing 
embryo (Phillips and Williams, 1944; Baumann and Meuer, 
1992). This transition coincides with a major metabolic shift 
in which fatty acid oxidation becomes the predominant 
energy pathway, while reliance on carbohydrates declines 
(Foye et al., 2006; De Oliveira, 2007). Yolk lipids originate 
from the maternal liver, where they are synthesized, packaged 
into very-low-density lipoproteins (VLDL), and transported to 
the ovary for deposition into developing oocytes (Hall and 
Mckay, 1993; Walzem, 1996). Thus, the lipid profile of the 
yolk reflects the composition of maternal VLDL (Speake et 
al., 1998). During incubation, the yolk sac membrane (YSM) 
plays a central metabolic role by absorbing yolk lipids and 
delivering them to the embryo (Noble and Cocchi, 1990). 
Lipids are stored in cytoplasmic droplets, hydrolyzed through 
lysosomal fusion (Lambson, 1970), and re-esterified in the 
endoplasmic reticulum before being secreted as VLDL for 

embryonic utilization (Speake et al., 1998). By day 14 of 
incubation, the embryo has completed most structural 
development and enters a plateau phase of oxygen consump-
tion (Christensen et al., 1996). During this stage, energy 
metabolism shifts again toward carbohydrates because oxygen 
availability becomes limiting relative to metabolic demand 
(Donaldson and Christensen, 1991). Since eggs contain 
minimal free carbohydrate, glucose during this stage is 
synthesized de novo from endogenous proteins and amino 
acids (Matthews and Holde, 1990; Christensen et al., 2001). 
As hatching approaches, the embryo begins ingesting 
amniotic fluid and accumulates glycogen within the liver and 
skeletal muscle to prepare for the high metabolic demands of 
internal and external pipping (Donaldson and Christensen, 
1982; Moran, 2007). These glycogen reserves support muscle 
activity, thermoregulation, and basal metabolism, and remain 
the sole energy source until exogenous feed becomes 
available post-hatch (De Oliveira et al., 2008). Near day 21, 
the YSM becomes a primary site of glucose metabolism and 
is characterized by substantial glycogen accumulation and 
upregulation of key gluconeogenic enzymes, including 
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6- 
phosphatase (G6Pase) (Christensen et al., 2001; Yadgary and 
Uni, 2012). As glycogen stores are depleted, the embryo 
increasingly relies on protein catabolism, primarily utilizing 
amino acids from the pectoral muscles for gluconeogenesis 
(Keirs et al., 2002; Foye et al., 2006). Collectively, the YSM, 
liver, and skeletal muscle operate as coordinated metabolic 
organs that sustain the energy requirements of the developing 
embryo. During mid-incubation, the YSM hydrolyzes yolk 
lipids into fatty acids and glycerol, which are utilized for β
-oxidation and gluconeogenesis, respectively (Klasing, 1998; 
De Oliveira et al., 2008). The liver, initially immature, begins 
storing glycogen during mid-incubation and becomes the 
principal site of gluconeogenesis following internal pipping, 
maintaining glucose homeostasis when yolk carbohydrate 
reserves are exhausted (De Oliveira et al., 2008). Meanwhile, 
skeletal muscle, particularly the pectoralis and pipping 
muscles, accumulates glycogen and undergoes active glyco-
genolysis and proteolysis immediately before hatch to support 
the intense muscular activity required for hatching (Pulikanti 
et al., 2010).
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3. Nutrient Absorption and Transfer in Late-

Term Embryos

During late incubation, particularly around ED 19, the yolk 
sac becomes internalized into the abdominal cavity and 
accounts for approximately 15 to 20% of the embryo’s body 
weight (BW), serving as the primary nutrient reservoir until 
hatch (De Oliveira et al., 2008). Although lipid uptake from the 
yolk is minimal during early embryogenesis, lipid mobilization 
accelerates markedly during the final phase of development, 
providing the major metabolic fuel for the embryo (Yadgary et 
al., 2010). Docosahexaenoic acid, which is critical for neural 
and retinal development, is preferentially mobilized during this 
stage and coincides with the near doubling of embryonic brain 
weight (Wong and Uni, 2020). Within yolk sac epithelial cells, 
lipid-soluble nutrients are esterified by cholesterol acyltrans-
ferase, packaged into low- density lipoproteins, and transported 
via the yolk vein to the embryonic liver (Noble, 1986; Shand 
et al., 1993). Hydrolysis of lipids by the yolk sac lipases 
release free fatty acids and glycerol, with the former 
undergoing β-oxidation to supply ATP and the latter serving as 
a substrate for gluconeogenesis (Romanoff, 1960; Foye et al., 
2007). Yolk absorption proceeds rapidly during the final hours 
before hatch and is largely completed approximately 14 hours 
pre-hatch (Freeman and Vince, 1974). As this process 
concludes, the yolk sac regresses and is incorporated into the 
abdominal cavity, continuing to supply nutrients during the 
immediate post-hatch period (Wong and Uni, 2020). During 
late embryogenesis, direct nutrient absorption through the yolk 
stalk also becomes increasingly important. The yolk stalk, 
which connects the yolk sac to the jejunum, expands 
substantially as hatch approaches, forming an open conduit for 
nutrient transfer (Noy et al., 1996). From approximately ED 18 
onward, intestinal growth accelerates dramatically. Relative 
intestinal weight increases disproportionately to BW as villus 
height (VH), enterocyte proliferation, and crypt activity 
intensify (Uni et al., 2003; Tako et al., 2004). Concurrently, the 
expression and activity of digestive enzymes and nutrient 
transporters located on the brush-border membrane rise sharply 
(Uni et al., 1999). For instance, sucrase-isomaltase and 
sodium-glucose cotransporter 1 become highly expressed 
immediately before hatch, enabling efficient digestion and 
absorption during the initial feeding period (Uni et al., 1999; 

Foye et al., 2007). Throughout most of incubation, hepatic 
metabolism relies primarily on fatty acid oxidation (Surugihalli 
et al., 2022). Glucose is synthesized endogenously and stored 
as glycogen in the liver, yolk sac, and skeletal muscle when 
available in excess (Noble and Cocchi, 1990; Speake et al., 
1998). As the embryo transitions into the pre-hatch period, 
physiological hypoxia develops due to high metabolic demand 
relative to oxygen availability (Dayan et al., 2023). Under such 
conditions, carbohydrate-based metabolism predominates, 
supported by rapid hepatic and muscular glycogenolysis that 
elevates circulating glucose (De Oliveira et al., 2013). Hepatic 
gluconeogenesis is similarly activated to produce glucose from 
amino acids and other non-carbohydrate precursors (Givisiez et 
al., 2020). These processes are tightly regulated by endocrine 
mediators, including insulin, glucagon, and thyroid hormones, 
to maintain glucose homeostasis (Lu et al., 2007; Moran, 
2007). As pulmonary respiration initiates, the yolk sac becomes 
a major site of glucose production, characterized by substantial 
glycogen accumulation and elevated expression of gluco-
neogenic enzymes such as PEPCK and G6Pase (Uni et al., 
2005; De Oliveira et al., 2008). The embryonic endocrine 
system tightly regulates nutrient absorption and metabolic 
transitions during late development. Thyroid hormones and 
corticosterone play central roles in elevating metabolic rate and 
promoting tissue maturation before hatch (Groef et al., 2013). 
The somatotropic axis, regulated by growth hormone- releasing 
hormone, thyrotropin-releasing hormone, and somatostatin, 
modulates pituitary growth hormone (GH) secretion, which 
subsequently stimulates insulin-like growth factor 1 (IGF-1) 
production to promote muscle and skeletal development (Kim, 
2010). By late embryogenesis, the hypothalamo-hypophyseal 
portal system is fully formed, enabling adrenal corticosterone 
secretion to be regulated by adrenocorticotropic hormone and 
corticotropin- releasing factor (Jenkins and Porter, 2004). 
Elevated corticosterone enhances GH secretion (Porter, 2005), 
and together they increase circulating triiodothyronine (T₃) 
levels, promoting metabolic activation, muscle differentiation, 
and lung maturation required for hatch (Groef et al., 2013). 
Pancreatic hormones also contribute to metabolic regulation. 
Embryonic β-cells begin secreting insulin around ED 11 to 12, 
promoting glycogen synthesis in response to rising blood 
glucose (Kikuchi et al., 1991; Givisiez et al., 2020). IGF-1 and 
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insulin-like growth factor 2 (IGF-2) are expressed throughout 
embryogenesis, with IGF-2 playing a particularly critical role in 
fetal tissue growth (Kocamiş and Killefer, 2003). Thus, nutrient 
absorption and metabolic regulation during late embryogenesis 
depend on the coordinated activity of the yolk sac, liver, and 
intestine. Disruptions in any of these systems can impair 
post-hatch viability and early growth performance (Christensen 
et al., 1999; Applegate et al., 2005).

BREEDER HEN AGE

1. Breeder Age on Egg Quality

The age of the breeder hen exerts a substantial influence on 
external and internal egg quality (Tona et al., 2003; Alo et al., 
2024). As hens progress in age, egg weight and yolk 
proportion increase, providing a larger potential energy 
reservoir for the developing embryo (Vieira and Moran, 1998; 
Peebles et al., 2001). However, this increase in yolk volume 
is accompanied by a decline in albumen quality; older hens 
produce albumen with reduced viscosity and lower protein 
concentration, weakening its protective capacity and dimi-
nishing its contribution to embryonic nutrition (Tona et al., 
2004; Fasenko, 2007). Consequently, despite the larger yolk 
mass, the overall nutritional composition of the egg becomes 
imbalanced, with relatively lower concentrations of amino 
acids, vitamins, and minerals in the albumen fraction 
(Yildirim and Yetisir, 2004). Eggshell quality also deteriorates 
progressively with breeder age. Reductions in shell thickness 
and structural strength, combined with increased shell 
porosity, elevate the risks of water loss and microbial 
penetration during incubation (Tůmová and Gous, 2012). 
These age-related structural changes contribute to reduced 
fertility and hatchability, a pattern associated with metabolic 
strain in older hens, imbalanced yolk nutrients, compromised 
embryonic vascular development, and oxygen limitations 
during late embryogenesis (Fasenko, 2007). Although chicks 
from older breeders tend to be heavier at hatch, they often 
exhibit reduced vitality, increased susceptibility to 
dehydration, and decreased resilience to stressors, which can 
impair early post-hatch growth (Vieira and Moran, 1998; 
Hudson et al., 2004). Increased shell porosity, in particular, 
exacerbates excessive moisture loss and hypoxic conditions 

during incubation, thereby altering embryonic energy 
metabolism and intensifying oxidative stress (Tona et al., 
2004). Breeder age is also closely related to alterations in the 
oxidative status of the developing embryo. Older hens 
accumulate greater amounts of reactive oxygen species due to 
prolonged metabolic activity and chronic exposure to 
environmental challenges (Liu et al., 2018; Gu et al., 2021). 
Numerous studies have reported a decline in total antioxidant 
capacity (TAC) and antioxidative enzymes such as superoxide 
dismutase (SOD) and glutathione (GSH), along with increased 
concentrations of malondialdehyde (MDA) in aged breeders 
(Liu et al., 2018; Chang et al., 2024). This compromised 
antioxidant defense heightens the embryonic vulnerability to 
oxidative stress, contributing to the elevated mortality 
observed in embryos from older hens (Zhang et al., 2025). In 
addition, proper skeletal development in avian embryos 
depends heavily on calcium derived from the eggshell, which 
supplies approximately 80% of total calcium required for 
embryogenesis (Tuan, 1988; Dieckert et al., 1989). Although 
the yolk provides roughly 30 mg of calcium, the shell 
contributes nearly 800 mg by the time of hatch (Alfonso- 
Torres et al., 2006; Yair and Uni, 2011). As breeder hens age, 
however, the amount of calcium deposited per shell remains 
relatively constant despite increasing egg size, resulting in a 
lower calcium density within the shell (Alfonso-Torres et al., 
2006). This reduction weakens the shell structure and 
increases fragility, ultimately contributing to decreased 
hatchability and higher late embryonic mortality (Elibol and 
Brake, 2002).

2. Nutritional Imbalance in Older Breeders

Eggs produced by older broiler breeders are typically 
larger and contain a higher yolk to albumen ratio, a 
characteristic that contributes to an inherent nutritional 
imbalance within the egg (Şahan et al., 2014). Previous 
studies have shown that the yolk of aged hens contains a 
greater lipid content but a lower protein content than that of 
younger hens (Yadgary et al., 2010). Although this shift 
increases the amount of available metabolic energy for the 
developing embryo, it simultaneously limits the supply of 
indispensable amino acids required for cellular differentiation, 
tissue formation, and overall embryonic growth (Yadgary et 
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al., 2010). Interestingly, a comparative evaluation of yolk 
from 32- and 52-week-old breeders reported higher 
concentrations of essential amino acids, including Met, Cys, 
Lys, Thr, Trp, Arg, and Ile, in yolks from the older flock 
(Santos et al., 2022). Nevertheless, the overall decline in yolk 
protein density and the disproportionate expansion of lipids 
indicate a reduction in protein quality relative to embryonic 
requirements. Moreover, eggs from older hens contain lower 
levels of antioxidant compounds such as carotenoids and 
vitamin E, rendering embryos more susceptible to oxidative 
damage (Cherian, 2008). Resultant oxidative stress can 
induce lipid peroxidation, DNA damage, and mitochondrial 
dysfunction, ultimately compromising embryonic viability and 
post-hatch physiological resilience (Li et al., 2020). Breeder 
age also influences yolk lipid composition, particularly the 
relative distribution of major fatty acids (Nielsen, 1998; 
Burnham et al., 2001). Because the embryo relies heavily on 
yolk lipids to meet its energetic demands, age-related shifts 
in fatty-acid profiles can directly affect hatchability and early 
growth (Washburn, 1990; Speake et al., 1998). With 
advancing maternal age, yolk typically exhibits increased 
proportions of polyunsaturated fatty acids (PUFA), especially 
arachidonic acid (C20:4 n-6), whereas linoleic acid (C18:2 
n-6) and myristic acids (C14:0) tend to decrease (Cherian, 
2008; Yilmaz-Dikmen and Sahan, 2009). A reduction in these 
fatty acids has been associated with lower hatchability and 
elevated late-stage embryonic mortality, likely reflecting 
age-related declines in fatty-acid synthesis deposition 
efficiency and yolk formation (Yilmaz-Dikmen and Sahan, 
2009). In addition, limited expression of metabolic enzymes 
and restricted oxygen availability during embryogenesis 
constrain the effective utilization of yolk fatty acids (Uni et 
al., 2003; Addo et al., 2018). Because PUFA are highly 
prone to peroxidation, their increased proportion heightens 
the embryo’s vulnerability to oxidative injury (Panda and 
Cherian, 2014). Beyond yolk changes, deterioration in 
albumen quality constitutes a second major physiological 
constraint in eggs from older hens. The thinning of the 
eggshell accelerates CO2 diffusion, thereby reducing the CO2 
binding capacity of the albumen and elevating albumen pH 
(Nasri et al., 2020). Elevated pH interferes with embryonic 
cellular metabolism and diminishes the buffering capacity of 

the albumen, creating a less favorable developmental environ-
ment (Chang et al., 2024). Albumen viscosity is primarily 
maintained by the structural integrity of the ovomucin- 
lysozyme complex, but an alkaline shift destabilizes this 
complex, promoting albumen liquefaction and reducing 
viscosity (Kato et al., 1970; 1985). These changes impair the 
albumen’s protective functions and diminish its role as a 
reservoir for amino acids and antimicrobial proteins, thereby 
compounding the nutritional and oxidative imbalance already 
present in the yolk (Jalili-Firoozinezhad et al., 2020). 
Collectively, alterations in yolk and albumen composition 
exert detrimental effects on embryonic development, reducing 
post-hatch vitality, stress tolerance, and immune competence 
(Cherian, 2008; Yadgary et al., 2010). Thus, although eggs 
from older hens may appear advantageous due to their larger 
size, they frequently contain physiological and nutritional 
deficiencies that constrain hatchability and chick quality 
(Fasenko et al., 1992). Therefore, targeted nutritional 
strategies are essential to correct these imbalances and 
mitigate the developmental limitations associated with eggs 
from aged broiler breeders.

IN OVO FEEDING

1. Physiological Benefit

IOF refers to the delivery of nutrients, amino acids, 
vitamins, or bioactive compounds directly into the egg during 
embryogenesis to support embryonic development and improve 
post-hatch growth (Das et al., 2021). A broad range of 
substances, including carbohydrates, amino acids, vitamins, 
probiotics, and prebiotics, has been administered through this 
technique, which is generally performed during the late stages 
of incubation (Uni and Ferket, 2004; Kucharska-Gaca et al., 
2017). Among the factors determining IOF efficacy, the 
injection site is particularly critical because it dictates the route 
of absorption, affects the safety of the procedure, and 
influences nutrient utilization efficiency (Das et al., 2021). 
Commonly targeted anatomical sites include the amniotic 
cavity, yolk sac, allantoic cavity, and air cell. The amniotic 
cavity is the most frequently used site, as embryos begin 
swallowing amniotic fluid during late development (Uni et al., 
2003). Nutrients injected into the amnion enter the gastro-
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intestinal tract and are absorbed through the intestinal mucosa, 
mimicking natural ingestion and offering an efficient uptake 
pathway (Uni and Ferket, 2004). The yolk sac serves as the 
primary nutrient reservoir for the embryo (Kucharska-Gaca et 
al., 2017). Compounds injected into the yolk are absorbed via 
the YSM and subsequently transported into the embryonic 
circulation (Li et al., 2016). Although yolk injection does not 
typically compromise hatchability, its absorption rate may be 
slower than that observed after amniotic administration (Das et 
al., 2021; Zhu et al., 2021). In contrast, the air cell provides 
a technically simple entry point due to its spacious structure; 
however, nutrients delivered into this region must be absorbed 
through the chorioallantoic vasculature (Siwek et al., 2018). 
Consequently, injections applied too close to hatch may 
interfere with pulmonary transition and compromise respiration 
function (Peebles, 2018). Albumen injection leverages the 
physiological transfer of albumen into the amniotic cavity near 
ED 19, where it becomes available for oral ingestion by the 
embryo (Pandey et al., 2021). The proteins are subsequently 
digested and absorbed through the intestinal epithelium 
(Peebles, 2018). The optimal timing of IOF is dependent on 
the biochemical characteristics of the substance delivered (Das 
et al., 2021). As the embryo approaches the final stages of 
development, intestinal absorptive pathways and metabolic 
systems become increasingly functional, enabling more 
effective utilization of the administered nutrients (Uni et al., 
2005). Supplementation during this period can partially 
compensate for the nutrient gap that newly hatched chicks 
experience before first access to feed, thereby supporting 
digestive maturation and immune system development (De 
Oliveira et al., 2014; Tako et al., 2014; Stawinska et al., 
2014). Consequently, IOF has gained prominence as an early 
nutritional intervention within broiler production systems 
seeking enhanced growth and improved feed efficiency (Uni 
and Ferket, 2004; Bakyaraj et al., 2012; Lugata et al., 2024). 
Late-term embryos experience progressive hypoxia and rely 
heavily on hepatic glycogen reserves and muscle protein 
catabolism to support hatching processes (Vieira and Moran, 
1999; Christensen et al., 2001). Supplementation with 
carbohydrates, amino acids, or antioxidants via IOF has been 
shown to enhance liver glycogen deposition, reduce 
proteolysis, and improve metabolic resilience (Givisiez et al., 

2020). IOF also enhances intestinal morphology, increasing 
VH and crypt depth (CD), thereby improving digestive 
capacity (Uni and Ferket, 2004). Specific amino acids, such as 
Arg, Thr, and Gln, stimulate enterocyte proliferation and 
mucin synthesis, strengthening mucosal integrity and pathogen 
resistance (Bhanja et al., 2014). In addition, IOF promotes the 
development of lymphoid organs and increases lymphocyte 
activity, leading to enhanced innate and adaptive immune 
responses (Peebles, 2018). Certain amino acids additionally 
contribute to cytokine regulation and exhibit anti-inflammatory 
effects (Ruth and Field, 2013). Hormonal modulation has also 
been reported, with corticosterone-related pathways implicated 
in promoting cellular growth and protein synthesis 
(Kucharska-Gaca et al., 2017). Despite these advantages, IOF 
carries technical risks. Penetration of the eggshell and 
embryonic membranes may physically damage the embryo or 
introduce bacterial contamination, potentially reducing 
hatchability (Abd El-Ghany, 2025). Therefore, meticulous 
hygienic procedures, including the use of sterile needles and 
thorough disinfection of the eggshell surface, are essential to 
minimize these risks (Elliott et al., 2020).

2. Applications of In Ovo Feeding

in ovo technology has been widely adopted in research 
settings and commercial poultry production (Kucharska-Gaca et 
al., 2017). One of the earliest and most successful applications 
is the administration of Marek’s disease vaccines into the 
amniotic cavity on day 18 of incubation, a practice that has 
been automated in more than 90% of U.S. hatcheries (Ricks et 
al., 1999; Peebles, 2018). Modern hatchery equipment is 
capable of sterilizing each needle, detecting viable embryos, 
and injecting the amniotic fluid or air cell at extremely high 
throughput, with processing capacities ranging from roughly 
12,000 to over 70,000 eggs per hour (Das et al., 2021). Recent 
research has expanded IOF applications to include a variety of 
nutrients and bioactive substances such as amino acids, 
carbohydrates, electrolytes, antioxidants, plant extracts, and 
other functional compounds, to enhance embryonic develop-
ment and enhance post-hatch performance (Uni and Ferket, 
2004; Peebles, 2018). In particular, IOF-based nutrient supple-
mentation has been recognized as an effective strategy to 
minimize the nutrient gap experienced by chicks prior to their 
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first feed access and to reduce early post-hatch mortality 
(Pinchasov and Noy, 1993; Vieira and Moran, 1999). For 
instance, the injection of vitamin C has been reported to 
enhance hatchability, improve bone strength, and support 
intestinal health (Soltani et al., 2019). A recent meta-analysis 
further indicated that IOF of vitamin C is particularly effective 
in lowering feed conversion ratio (FCR), while vitamin E tends 
to increase hatchling BW (Ncho et al., 2024). The technology 
has also been applied to microbial supplements; for example, 
IOF of probiotics, especially Bifidobacterium strains, into the 
yolk has been shown to increase post-hatch BW and improve 
FCR (Leão et al., 2021). Among phytogenic additives, 
cinnamon extract has attracted attention due to its capacity to 
reduce MDA levels and improve feed efficiency (Akosile et al., 
2023). Resveratrol administration has likewise been associated 
with increased hatchability and greater hatchling BW 
(Elsaadany et al., 2019). Commercially, automated injection 
systems have demonstrated high throughput and precision, 
capable of treating tens of thousands of eggs per hour with 
minimal hatchability loss (McGruder et al., 2011; Zhai et al., 
2011). Consequently, IOF has developed from an experimental 
concept into a nutritional strategy that enhances immune 
function, growth performance, and nutrient utilization 
efficiency, and it is anticipated to play an increasingly central 
role in future commercial poultry feeding practices.

IN OVO FEEDING OF AMINO ACID

1. In Ovo Feeding of Arginine

Arg serves as a precursor for nitric oxide (NO), 
polyamines, creatine, and proline, and plays vital roles in 
angiogenesis, protein synthesis, and immune activation (Wu et 
al., 2009; Fathima et al., 2024). Polyamines and NO acts as 
key mediators of angiogenesis (Wu et al., 2009). NO 
generated from Arg enhances CAM vascularization, thereby 
improving oxygen and nutrient delivery to embryonic tissues 
(Fathima et al., 2024). Arg also activates the mammalian 
target of rapamycin signaling pathway, stimulating myo-
fibrillar protein synthesis and cell proliferation, while 
simultaneously upregulating antioxidant enzymes to mitigate 
oxidative stress (Khajali et al., 2020; Linh et al., 2021). 
Across numerous studies (Table 1), IOF of Arg has 

consistently demonstrated beneficial effects on hatchability, 
early growth, gastrointestinal maturation, immune function, 
and metabolic regulation in broiler chickens. Arg is most 
commonly injected into the amniotic cavity or air cell 
between ED 14 and ED 18, with effective concentrations 
ranged from 0.5 to 2%. Improvements in hatchability, 
embryonic survival, and chick weight at hatch have been 
widely reported (Nayak et al., 2016; Subramaniyan et al., 
2019; Nabi et al., 2025). Enhanced feed efficiency and 
accelerated BW gain (BWG) has been observed following 
IOF of Arg. Early post-hatch growth is particularly 
responsive, IOF of Arg increased BWG during 1—7 days 
(Gao et al., 2016) and improved FCR during 1—21 days (Saki 
et al., 2013), enhanced FCR at 30 days (Omidi et al., 2020), 
and increased feed intake (FI) and BWG at 42—48 days (Saki 
et al., 2013). Additional increases in FI from 11—42 days and 
greater BW at 24 and 42 days have been observed 
(Tahmasebi and Toghyani, 2016). One of the most prominent 
consequences of the IOF of Arg is accelerated intestinal 
morphogenesis. Supplementation increases VH, VH to crypt 
depth ratio (VH:CD), and reduces CD, thereby improving 
absorptive capacity (Gao et al., 2016). Activities of digestive 
enzymes, including alkaline phosphatase (AKP), maltase, and 
sucrase rise accordingly, accompanied by upregulation of 
inducible NO synthase (iNOS) (Gao et al., 2016). Arg also 
elevates the expression of gut hormones, such as ghrelin, 
vasoactive intestinal peptide (VIP), and glucagon-like 
peptide-2 (GLP-2), which collectively support early intestinal 
functional maturation (Gao et al., 2016). Arg exerts strong 
immunomodulatory effects. Increased expression of NO 
synthase (NOS), iNOS, Toll-like receptor-2 (TLR-2), and 
TLR-4 has been observed in the duodenum, jejunum, and 
ileum at 21 days (Gao et al., 2017). Humoral immune 
indicators, including secretory immunoglobulin A (sIgA), 
interleukin-2 (IL-2), interleukin-4 (IL-4), and serum immu-
noglobulin A (IgA), are elevated following IOF of Arg (Gao 
et al., 2017), and higher sheep red blood cell (SRBC) 
antibody titers have been reported (Toghyani et al., 2019). 
Arg also strengthens the intestinal barrier function by 
upregulating Mucin-2, claudin-1, zonula occludens-1 (ZO-1), 
and ZO-2 (Gao et al., 2017). Furthermore, Arg enhances the 
expression of key nutrient-sensing receptors, including taste 
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Broiler 
strain

Breeder 
age

Injection 
site

Injection 
day

Inclusion 
level Positive effects2 References

- 52 week Amniotic 
fluid d 5 2% Growth performance (1—21 d FCR↓, 42—48 d FI↑, ↑BWG), 

serum parameter (Haematocrit↓, BV↓, SV↓, H:L ratio↓, NO↑)
Saki et al. 

(2013)

- 50 week Albumen d 10 0.5, 1, 
1.5% Growth performance (42 d BWG↑, FCR↓) Azhara et al. 

(2016)

Cobb 
400 34 week Amniotic 

fluid d 18 0.5% Hatching performance (hatch weight↑), growth performance (1—21 d 
BW↑)

Nayak et al. 
(2016)

- 34 week Amnion d 17.5 1%

Growth performance (1—7 d BWG↑), organ weight (liver↑, 
proventriculus↑, gizzard↑), gut health (duodenum VH↑, CD↓, 
VH:CD↑), hormone (duodenum ghrelin↑, VIP↑ and GLP-2↑), 

enzyme activities (duodenum AKP↑, maltase↑, sucrase↑, iNOS↑) 

Gao et al. 
(2016)

- - Air sac d 14 7% Growth performance (24 and 42 d BW↑, 11—42 d FI↑), 
organ length (42 d jejunum↑, ileum↑), gut health (11 d jejunum CD↓)

Tahmasebi and 
Toghyani (2016)

Arbor 
Acres 34 week Amniotic 

fluid d 17.5 1%
Growth performance (1—42 d BWG↑, FI↑), gut health (42 d jejunum 
VH↑, CD↓, VH:CD↑, 21 d jejunum Mucin-2↑, claudin-1↑, ZO-1↑, 
ZO-2↑), cellular signaling (21 d jejunum mTOR↑, S6K1↑, 4E-BP1↑)

Gao et al. 
(2017a)

Arbor 
Acres 34 week Amniotic 

fluid d 17.5 0.5, 
1, 2%

Growth performance (7—21 d BW↑, 1—21 d ADG↑, ADFI↑), organ 
weight (liver↑, proventriculus↑, gizzard↑, duodenum↑, jejunum↑, and 

ileum↑, hormone (jejunum ghrelin↑ and GLP-2↑), enzyme activity 
(jejunum amylase↑, trypsin↑, and lipase↑, jejunum AKP↑, maltase↑, 
sucrase↑), sensing receptors (jejunum T1R1↑, T1R3↑, CaR↑, PRC6A↑), 

nutrient transporters (jejunum SLC7A4↑, SLC7A6↑, SLC7A7↑, 
SLC3A1↑, SLC6A19↑, SLC1A1↑, SGLT1↑, GLUT2↑, GLUT5↑, 

FABP1↑), serum parameter (Arg↑, Ile↑, Leu↑, Met↑, Val↑, Pro↑)

Gao et al. 
(2017b)

Arbor 
Acres 34 week Amnion d 17.5 1%

Immune signaling (21 d duodenum NOS↑, iNOS↑, jejunum NOS↑, 
iNOS↑, ileum iNOS↑, duodenum and ileum TLR-4↑, jejunum 

TLR-2↑ and TLR-4↑), serum parameter (iNOS↑ and NO↑), organ 
weight (thymus↑), immune indicator (duodenum, jejunum, and ileum 

sIgA↑, IL-2↑, IL-4↑, serum IgA↑, IL-2↑, IL-4↑)

Gao et al. 
(2017c)

Arbor 
Acres 34 week Amnion d 17.5 1%

Organ weight (0, 3, 7, 21 d ↑breast), plasma parameter (21 d TP↑, 
ALB↑, T3↑, and T4↑), breast muscle amino acid concentrations (21 

d Thr↑, Val↑, Leu↑, Phe↑, Lys↑, Arg↑, Gln↑, and Ala↑), 
cellular signaling (21 d breast muscle mTOR↑, S6K1↑)

Yu et al. 
(2018a)

Arbor 
Acres 34 week Amnion d 17.5 1%

Liver parameter (0 d glycogen↑, 0, 21 d glucose↑, 0 d G6P↑, 0 and 
7 d PEPCK↑, 0 d glycogen synthase↑, 0 d glycogen phosphorylase↓), 
plasma parameter (0 d glycogen↑ and insulin↑), muscle parameter (0, 

3, 21 d glycogen synthase↑, 0, 21 d glycogen phosphorylase↓)

Yu et al. 
(2018b)

- - - d 8, 14, 18 0.1, 1, 
2.5%

Hatching performance (1%-d 14, 18 survival rate↑, d 14 hatching rate↑, 
chick weight↑), stress indicator (1%-d 14 breast HSP47↓, HSP60↓, 

HSP70↓), muscle differentiation (breast myogenin↑, MyoD↑)

Subramaniyan 
et al. (2019)

Ross 
308 - Air sac d 14 7% Growth performance (1—42 d BWG↑, FI↑), 

serum parameter (31 d SRBC↑, 14 d AST↑)
Toghyani et 
al. (2019)

- 24 week Amniotic 
fluid d 14 0.5, 1% Growth performance (30 d FCR↓), 

gut health (caecum Coliform↓, E. coli↓, Lactobacillus↑)
Omidi et al. 

(2020)

- - - d 18 1% Antioxidant capacity (0 d breast MDA↓, GSH↑, 21 d breast TAC↑) Lu et al. 
(2022)

Table 1. Effects of in ovo feeding of arginine in broiler chickens1
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receptor type 1 members 1 and 3 (T1R1, T1R3), calcium- 
sensing receptor (CaR), and G protein-coupled receptor family 
C group 6 member A (GPRC6A). These changes coincide 
with increased expression of amino acid, glucose, and fatty 
acid transporters, indicating broad improvement in nutrient 
uptake and metabolic readiness (Gao et al., 2017). Consistent 
with these changes, circulating concentrations of Arg, Ile, 
Leu, Met, Val, and Pro increase following IOF of Arg. Arg 
activates the mTOR-ribosomal protein S6 kinase 1 (S6K1), 
eukaryotic translation initiation factor 4E-binding protein 1 
(4E-BP1) pathway in intestinal and muscle tissues, enhancing 
protein synthesis and muscle accretion (Gao et al., 2017; Yu 
et al., 2018). Correspondingly, breast muscle concentrations of 
several amino acids, including Thr, Val, Leu, Phe, Lys, Arg, 
and Gln, are elevated (Yu et al., 2018). Energy metabolic 
indicators also improve, with increased hepatic and muscle 
glycogen, upregulated glucose-6-phosphate (G6P) and 
PEPCK, and reduced glycogen phosphorylase activity (Yu et 
al., 2018). These shifts suggest improved metabolic resilience 
during the immediate post-hatch transition. Arg enhances 
antioxidant status by reducing MDA and increasing GSH and 

TAC in muscle tissues (Lu et al., 2022). Serum glutathione 
peroxidase (GPx) and catalase (CAT) activities also rise, 
accompanied by reduced hepatic NF-κB expression (Ge et al., 
2025). Downregulation of heat-shock proteins (HSP47, 
HSP60, and HSP70) following Arg treatment suggests 
improved stress tolerance and cellular protection (Subra-
maniyan et al., 2019). Additionally, Arg positively influences 
microbial ecology by reducing Coliform and Escherichia coli 
counts while increasing Lactobacillus populations in the 
cecum, indicating a shift toward a healthier microbial 
environment (Toghyani et al., 2019). 

2. In Ovo Feeding of Tryptophan

Trp is an essential amino acid that contributes not only to 
protein synthesis but also to the biosynthesis of serotonin and 
melatonin, two key molecules involved in stress regulation 
and behavioral stability (Moreira Filho et al., 2019). Serotonin 
derived from Trp supports neural development, whereas 
melatonin exerts antioxidative and immunomodulatory effects, 
protecting embryonic tissues from oxidative injury (Ebrahimi 
et al., 2025). Trp also participates in niacin metabolism, 

Broiler 
strain

Breeder 
age

Injection 
site

Injection 
day

Inclusion 
level Positive effects2 References

LiFeng 50 week Amniotic 
cavity d 17.5 1.2% Antioxidant capacity (1 d serum GPx↑, 21 d serum CAT↑), 

cellular signaling (1 d liver NF-kB↓)
Ge et al. 

(2025)

- - Amniotic 
fluid d 17 5% Hatching performance (hatchability↑), organ weight (thymus↑), 

carcass trait (42 d carcass↑), plasma parameter (42 d ALT↓, AST↓)
Nabi et al. 

(2025)
1 FCR, feed conversion ratio; FI, feed intake; BWG, body weight gain; BV, blood viscosity; SV, serum viscosity; H:L ratio, heterophil 
to lymphocyte ratio; NO, nitric oxide; VH, villus height; CD, crypt depth; VH:CD, villus height to crypt depth ratio; VIP, vasoactive 
intestinal peptide; GLP-2, glucagon-like peptide-2; AKP, alkaline phosphatase; iNOS, inducible nitric oxide synthase; NOS, nitric oxide 
synthase; TLR-4, toll-like receptor 4; TLR-2, toll-like receptor 2; sIgA, secretory immunoglobulin A; IL-2, interleukin-2; IL-4, interleukin-4; 
IgA, immunoglobulin A; ADG, average daily gain; ADFI, average daily feed intake; T1R1, taste receptor type 1 member 1; T1R3, taste 
receptor type 1 member 3; CaR, calcium-sensing receptor; GPRC6A, G protein-coupled receptor class C group 6 member A; SLC7A4, 
solute carrier family 7 member 4; SLC7A6, solute carrier family 7 member 6; SLC7A7, solute carrier family 7 member 7; SLC3A1, solute 
carrier family 3 member 1; SLC6A19, solute carrier family 6 member 19; SLC1A1, solute carrier family 1 member 1; SGLT1, 
sodium-glucose cotransporter 1; GLUT2, glucose transporter 2; GLUT5, glucose transporter 5; FABP1, fatty acid-binding protein 1; Arg, 
arginine; Ile, isoleucine; Leu, leucine; Met, methionine; Val, valine; Pro, proline; ZO-1, zonula occludens-1; ZO-2, zonula occludens-2; 
mTOR, mammalian target of rapamycin; S6K1, ribosomal protein S6 kinase 1; 4E-BP1, eukaryotic translation initiation factor 4E-binding 
protein 1; G6P, glucose-6-phosphate; PEPCK, phosphoenolpyruvate carboxykinase; TP, total protein; ALB, albumin; T3, triiodothyronine; 
T4, thyroxine; HSP47, heat shock protein 47; HSP60, heat shock protein 60; HSP70, heat shock protein 70; MyoD, myoblast determination 
protein; SRBC, sheep red blood cell antibody titer; AST, aspartate aminotransferase; Coliform, coliform bacteria; E.coli, Escherichia coli; 
MDA, malondialdehyde; GSH, reduced glutathione; TAC, total antioxidant capacity; GPx, glutathione peroxidase; CAT, catalase; NF-kB, 
nuclear factor kappa-light-chain-enhancer of activated B cells; ALT, alanine aminotransferase.
2 The symbol ‘↑’ represented an increase, while ‘↓’ denoted a decrease.

Table 1. Continued



Park and Kim : In Ovo Feeding and Embryonic Development in Broiler Chickens 281

indirectly reducing embryonic mortality during late incubation 
through improved redox balance (Qaisrani et al., 2018). 
Approximately 95% of Trp catabolism occurs through the 
hepatic kynurenine pathway, supporting the synthesis of 
niacin and nucleotide intermediates (Badawy, 2017). In 
addition, Trp-derived indole compounds have been shown to 
enhance intestinal epithelial function by upregulating tight 
junction proteins, improving mucosal integrity, and facilitating 
more efficient nutrient transport (Li et al., 2021). The 
functional relevance of Trp during embryogenesis has been 
demonstrated in broiler chickens (Table 2). Nayak et al. 
(2022) reported that IOF of 0.5% Trp into the amniotic cavity 
at ED 18 improved both carcass characteristics and early 
intestinal development. Notably, broiler chickens injecting Trp 
exhibited a higher proportion of breast muscle at 28 days, 
indicating an early advantage in lean tissue accretion. 
Improvements in intestinal architecture were also observed, 
with duodenal samples collected at 4 days post-hatch showing 
increased VH, reduced CD, and an elevated VH:CD ratio, 
collectively indicating enhanced absorptive capacity and 
mucosal health. These findings suggest that IOF of Trp during 
late embryogenesis may contribute to the establishment of a 
more functionally mature intestine, providing a physiological 
foundation that supports superior growth performance during 
subsequent production phases.

3. In Ovo Feeding of Threonine

Thr is a key component of intestinal mucin and plays a 
central role in maintaining the structural integrity of the 
mucosal barrier and supporting immune defense (Kadam et 
al., 2008). Thr metabolism also provides glycine and serine 
precursors required for glutathione synthesis, thereby 
supporting the antioxidant defense system (Huang et al., 
2021). Thr is metabolically versatile, undergoing degradation 

through several enzymatic pathways. It may be cleaved by 
Thr aldolase to produce Gly and acetaldehyde, or oxidized by 
Thr dehydrogenase to form 2-amino-3-ketobutyrate, which is 
subsequently converted to glycine and acetyl-CoA (Strifler et 
al., 2024). In addition, Thr dehydratase catalyzes the 
conversion of Thr to α-ketobutyrate, a precursor of propionyl- 
CoA and succinyl-CoA, allowing Thr-derived carbon to enter 
the tricarboxylic acid cycle (Ding et al., 2019). IOF of Thr 
has consistently demonstrated beneficial effects on hatch-
ability, early gut development, growth performance, and 
antioxidant capacity (Table 3). Improvements in hatching 
performance have been reported following amniotic injection, 
with 1% Thr increased chick yield and 5% Thr enhanced 
hatchability (Mousavi et al., 2009; Nabi et al., 2025). 
Productive responses during post-hatch growth have also 
been documented. Kadam et al. (2008) observed that yolk sac 
injection of Thr at 2.5 to 10% elevated BWG from 21—28 
days and increased FI during 14—21 days. Similarly, 
Tahmasebi and Toghyani (2016) reported that 5% Thr 
delivered into either the air cell or amnion improved BW at 
11, 24, and 42 days and enhanced FI from 1—42 days, 
ultimately improving carcass weight. Additional evidence 
showed improved BWG and FCR through 42 days (Mousavi 
et al., 2019). Furthermore, Nabi et al. (2025) reported 
enhanced hatchability, thymus weight, and carcass yield with 
5% Thr. Thr also play a crucial role in the structural 
maturation of the small intestine. IOF of 0.5% Thr has been 
shown to stimulate early duodenal development, characterized 
by increased VH, reduced CD, and a higher VH:CD ratio at 
4 days of age (Nayak et al., 2022). Supporting these findings, 
Tahmasebi and Toghyani (2016) reported increased jejunal 
and ileal segments at 42 days. The physiological benefits of 
Thr extend beyond morphological growth. Enhancements in 
metabolic and immune parameters have been observed, 

Broiler 
strain

Breeder 
age

Injection 
site Injection day Inclusion 

level Positive effects2 References

Cobb 400 34 week Amnion d 18 0.5% Carcass trait (28 d breast↑), 
gut health (4 d duodenum VH↑, CD↓, VH:CD↑)

Nayak et al. 
(2022)

1 VH, villus height; CD, crypt depth; VH:CD.
2 The symbol ‘↑’ represented an increase, while ‘↓’ denoted a decrease.

Table 2. Effects of in ovo feeding of tryptophan in broiler chickens1
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including increased SRBC antibody titers at day 31, 
elevations in serum glucose and albumin (ALB) at day 14 
(Toghyani et al., 2019), and increased intestinal mass (Alabi 
et al., 2020). Furthermore, Thr appears to reinforce anti-
oxidant defenses and intestinal health, as demonstrated by 
increased SOD activity and improved VH:CD ratio in the 
jejunum following 6% Thr injection (Eisa et al., 2022).

CONCLUSION

IOF has emerging as an effective strategy to enhance 

embryonic nutrition in modern broiler production, where rapid 

post-hatch growth places substantial metabolic demands on 

chicks. Accumulated evidence indicates that IOF supports 

gastrointestinal maturation, improves immune competence, 

and strengthens metabolic resilience, while targeted admini-

stration with amino acids such as Arg, Trp, and Thr further 

promotes muscle development, gut health, and antioxidant 

capacity. IOF has also been applied to alleviate the nutritional 

and physiological limitations associated with eggs from older 

breeders, thereby improving chick quality and early growth. 

However, variation in injection timing, dosage, and site- 

specific absorption dynamics highlights the need for further 

standardization of IOF protocols and a clearer mechanistic 

understanding of IOF-induced responses. Continued refine-

ment of IOF techniques and additional research will be 

essential to achieve consistent and predictable improvements 

in broiler health and growth performance.
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Broiler 
strain

Breeder 
age

Injection 
site

Injection 
day

Inclusion 
level Positive effects2 References

Yolk d 14 2.5, 5.0, 7.5, 
10% Growth performance (21—28 d BWG↑, 14—21 d FI↑) Kadam et al. 

(2008)

Amniotic 
fluid d 17 1% hatching performance (chick yield↑), 

growth performance (1—42 d BWG↑, FCR↓)
Mousavi et al. 

(2009)

Air sac d 14 5%
Growth performance (11, 24, and 42 d BW↑, 1—42 d 

FI↑), carcass trait (11 d carcass↑), 
organ length (42 d jejunum↑, ileum↑)

Tahmasebi and 
Toghyani (2016)

Ross 308 Air sac d 14 5% Growth performance (1—42 d BWG↑, FI↑), 
serum parameter (31 d SRBC↑, 14 d glucose↑, ALB↑)

Toghyani et al. 
(2019)

Amniotic 
cavity d 18 3, 6, 9% Organ weight (0 d intestine↑) Alabi et al. 

(2020)

Ross 308 Amniotic 
fluid d 18 6% Antioxidant capacity (serum SOD↑), 

gut health (jejunum VH:CD↑)
Eisa et al. 

(2022)

Amniotic 
fluid d 17 5%

Hatching performance (hatchability↑), 
organ weight (thymus↑), carcass trait (42 d carcass↑), 

serum parameter (42 d ALT↓, AST↓)

Nabi et al. 
(2025)

1 BWG, body weight gain; FI, feed intake; FCR, feed conversion ratio; SRBC, sheep red blood cell antibody titer; ALB, albumin; SOD, 
superoxide dismutase; VH:CD, villus height to crypt depth ratio.
2 The symbol ‘↑’ represented an increase, while ‘↓’ denoted a decrease.

Table 3. Effects of in ovo feeding of threonine in broiler chickens1
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