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Heat Stress Reprograms Lipid Metabolism in Chickens
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ABSTRACT Due to high basal temperatures, rapid growth, and the absence of sweat glands, chickens are highly susceptible
to heat stress, which systematically reprograms hepatic lipid metabolism. Current physiological and multi-omics data highlight
three primary effects: increased de novo lipogenesis, suppressed [(-oxidation, and impaired very-low-density lipoprotein
(VLDL) assembly and export. These metabolic shifts are driven by mitochondrial dysfunction, oxidative stress, and
endoplasmic reticulum (ER) stress, leading to hepatic triglyceride accumulation. Consequently, heat stress results in altered
carcass fat distribution, changes in fatty acid composition, and reduced meat quality and productivity. Effective mitigation
requires an integrated approach combining environmental control, nutritional strategies, and genetic interventions such as
thermal conditioning. This review summarizes these mechanisms to identify targets for mitigation strategies for restoring
hepatic lipid homeostasis and maintaining poultry performance in a warming climate.

(Key words: heat stress, lipid metabolism, metabolic shift, mitigation, chicken)
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(B8, 9% 52 A2 4 AUthHe et al,, 2015; Lu et
al., 2018; Lan et al., 2022; Tokutake et al., 2025). ©71(7Q)
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et al,, 2019), A713F) =& Al H4 Aol ] 80%7HA]
=7k AlEl= B EATHLu et al., 2007).
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Fig. 1. Conceptual illustration of heat stress - induced hepatic
lipid dysregulation in chickens. Elevated temperatures impair
mitochondrial oxidative capacity and reduce B-oxidation, while
simultaneously enhancing de novo lipogenesis (DNL) and
suppressing very-low-density lipoprotein (VLDL) assembly and
export. The combined effects lead to excessive lipid accumulation
in the liver, contributing to metabolic imbalance and reduced
production performance.
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Fig. 2. Flowchart of heat stress - induced oxidative and ER stress
and consequent lipid metabolic changes in chicken liver. Heat
stress increases ROS production and induces HSP70 expression
and the unfolded protein response (UPR). These stress pathways
impair mitochondrial function and alter lipid metabolism by
enhancing lipogenesis, reducing [-oxidation.
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* P ROS / oxidative stress
* I ER stress (UPR)

Organ / tissue-level consequences

e Triglyceride accumulation
e Fatty liver

D Ee] @ zEg 29 ALY AR

Final outcomes

Carcass traits
¢ P Abdominal fat (%)
¢ | Leanyield

e Altered plasma lipids

Hepatic lipid metabolism shift

* I De novo lipogenesis (SREBP-1c)

* |, B-oxidation (AMPK—PPARa)

¢ |, VLDL assembly/export (ApoB, MTTP)

Muscle

¢ IMF imbalance
* I Oxidative susceptibility

Adipose tissue
¢ M Abdominal fat
e Altered fat partitioning

Meat quality

¢ |, Water-holding capacity
* ‘] Lipid oxidation

¢ | Tenderness

Productivity
¢ |, Body weight gain
¢ |, Feed efficiency

Fig. 3. Heat stress-induced lipid metabolic reprogramming and production outcomes in chickens. Heat stress induces mitochondrial
dysfunction, oxidative stress, and ER stress in the chicken liver, resulting in a coordinated shift toward increased lipogenesis, reduced
B-oxidation, and impaired VLDL export. This hepatic lipid imbalance promotes triglyceride accumulation and abnormal lipid
partitioning to adipose and muscle tissues. Consequently, these metabolic alterations lead to increased abdominal fat, deterioration of

meat quality, and reduced growth performance and feed efficiency.
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